Cancer: A turbulence problem

Cancers are complex, adaptive ecosystems. They remain the leading cause of disease-related death among children in North America. As we approach computational oncology and Deep Learning Healthcare, our mathematical models of cancer dynamics must be revised. Recent findings support the perspective th...

Full description

Bibliographic Details
Main Author: Abicumaran Uthamacumaran
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Neoplasia: An International Journal for Oncology Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1476558620301548
Description
Summary:Cancers are complex, adaptive ecosystems. They remain the leading cause of disease-related death among children in North America. As we approach computational oncology and Deep Learning Healthcare, our mathematical models of cancer dynamics must be revised. Recent findings support the perspective that cancer-microenvironment interactions may consist of chaotic gene expressions and turbulent protein flows during pattern formation. As such, cancer pattern formation, protein-folding and metastatic invasion are discussed herein as processes driven by chemical turbulence within the framework of complex systems theory. To conclude, cancer stem cells are presented as strange attractors of the Waddington landscape.
ISSN:1476-5586