Effect of WC on microstructure and properties of induction brazing diamond coating

The diamond coating was prepared on Q235 steel by adding WC micro-powder to a nickel-based filler metal during induction brazing. The effects of WC powder on the microstructure and wear resistance of the diamond coating were studied. The microstructure and wear resistance of the diamond coating were...

Full description

Bibliographic Details
Main Authors: Qilong WU, Xian DONG, Lei ZHANG, Sujuan ZHONG, Zhiqiang CHEN, Lianhui JIA, Lingjie LUO
Format: Article
Language:zho
Published: Zhengzhou Research Institute for Abrasives & Grinding Co., Ltd. 2023-10-01
Series:Jin'gangshi yu moliao moju gongcheng
Subjects:
Online Access:http://www.jgszz.cn/article/doi/10.13394/j.cnki.jgszz.2022.0205
Description
Summary:The diamond coating was prepared on Q235 steel by adding WC micro-powder to a nickel-based filler metal during induction brazing. The effects of WC powder on the microstructure and wear resistance of the diamond coating were studied. The microstructure and wear resistance of the diamond coating were characterized by scanning electron microscopy, energy spectrum, microhardness and wear loss tests. The results show that during the brazing process, diamond and WC micro-powder form metallurgical bonds with the nickel-based brazing alloy. The WC particles contribute to dispersion strengthening and fine-grain strengthening effects in the nickel-based matrix. The Rockwell hardness of the brazing alloy with a mass fraction of 10% WC increases by 7.5% compared to that without WC. Under identical wear experimental conditions, the mass loss of the diamond coating without added WC micro-powder was 0.196 g, while the mass loss of the coating with WC micro-powder added was 0.148 g. The wear resistance of the latter increased by 24.5%.
ISSN:1006-852X