Solar irradiance at the earth's surface: long-term behavior observed at the South Pole

This research examines a 17-year database of UV-A (320–400 nm) and visible (400–600 nm) solar irradiance obtained by a scanning spectroradiometer located at the South Pole. The goal is to define the variability in solar irradiance reaching the polar surface, with emphasis on the influence of cloudin...

Full description

Bibliographic Details
Main Authors: J. E. Frederick, A. L. Hodge
Format: Article
Language:English
Published: Copernicus Publications 2011-02-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/11/1177/2011/acp-11-1177-2011.pdf
_version_ 1818805939173588992
author J. E. Frederick
A. L. Hodge
author_facet J. E. Frederick
A. L. Hodge
author_sort J. E. Frederick
collection DOAJ
description This research examines a 17-year database of UV-A (320–400 nm) and visible (400–600 nm) solar irradiance obtained by a scanning spectroradiometer located at the South Pole. The goal is to define the variability in solar irradiance reaching the polar surface, with emphasis on the influence of cloudiness and on identifying systematic trends and possible links to the solar cycle. To eliminate changes associated with the varying solar elevation, the analysis focuses on data averaged over 30–35 day periods centered on each year's austral summer solstice. The long-term average effect of South Polar clouds is a small attenuation, with the mean measured irradiances being about 5–6% less than the clear-sky values, although at any specific time clouds may reduce or enhance the signal that reaches the sensor. The instantaneous fractional attenuation or enhancement is wavelength dependent, where the percent deviation from the clear-sky irradiance at 400–600 nm is typically 2.5 times that at 320–340 nm. When averaged over the period near each year's summer solstice, significant correlations appear between irradiances at all wavelengths and the solar cycle as measured by the 10.7 cm solar radio flux. An approximate 1.8 ± 1.0% decrease in ground-level irradiance occurs from solar maximum to solar minimum for the wavelength band 320–400 nm. The corresponding decrease for 400–600 nm is 2.4 ± 1.9%. The best-estimate declines appear too large to originate in the sun. If the correlations have a geophysical origin, they suggest a small variation in atmospheric attenuation with the solar cycle over the period of observation, with the greatest attenuation occurring at solar minimum.
first_indexed 2024-12-18T19:01:50Z
format Article
id doaj.art-66051be85fc8466e8df45d62364e30e7
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-18T19:01:50Z
publishDate 2011-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-66051be85fc8466e8df45d62364e30e72022-12-21T20:56:29ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242011-02-011131177118910.5194/acp-11-1177-2011Solar irradiance at the earth's surface: long-term behavior observed at the South PoleJ. E. FrederickA. L. HodgeThis research examines a 17-year database of UV-A (320–400 nm) and visible (400–600 nm) solar irradiance obtained by a scanning spectroradiometer located at the South Pole. The goal is to define the variability in solar irradiance reaching the polar surface, with emphasis on the influence of cloudiness and on identifying systematic trends and possible links to the solar cycle. To eliminate changes associated with the varying solar elevation, the analysis focuses on data averaged over 30–35 day periods centered on each year's austral summer solstice. The long-term average effect of South Polar clouds is a small attenuation, with the mean measured irradiances being about 5–6% less than the clear-sky values, although at any specific time clouds may reduce or enhance the signal that reaches the sensor. The instantaneous fractional attenuation or enhancement is wavelength dependent, where the percent deviation from the clear-sky irradiance at 400–600 nm is typically 2.5 times that at 320–340 nm. When averaged over the period near each year's summer solstice, significant correlations appear between irradiances at all wavelengths and the solar cycle as measured by the 10.7 cm solar radio flux. An approximate 1.8 ± 1.0% decrease in ground-level irradiance occurs from solar maximum to solar minimum for the wavelength band 320–400 nm. The corresponding decrease for 400–600 nm is 2.4 ± 1.9%. The best-estimate declines appear too large to originate in the sun. If the correlations have a geophysical origin, they suggest a small variation in atmospheric attenuation with the solar cycle over the period of observation, with the greatest attenuation occurring at solar minimum.http://www.atmos-chem-phys.net/11/1177/2011/acp-11-1177-2011.pdf
spellingShingle J. E. Frederick
A. L. Hodge
Solar irradiance at the earth's surface: long-term behavior observed at the South Pole
Atmospheric Chemistry and Physics
title Solar irradiance at the earth's surface: long-term behavior observed at the South Pole
title_full Solar irradiance at the earth's surface: long-term behavior observed at the South Pole
title_fullStr Solar irradiance at the earth's surface: long-term behavior observed at the South Pole
title_full_unstemmed Solar irradiance at the earth's surface: long-term behavior observed at the South Pole
title_short Solar irradiance at the earth's surface: long-term behavior observed at the South Pole
title_sort solar irradiance at the earth s surface long term behavior observed at the south pole
url http://www.atmos-chem-phys.net/11/1177/2011/acp-11-1177-2011.pdf
work_keys_str_mv AT jefrederick solarirradianceattheearthssurfacelongtermbehaviorobservedatthesouthpole
AT alhodge solarirradianceattheearthssurfacelongtermbehaviorobservedatthesouthpole