Benchmarking imputation methods for categorical biological data
Abstract Trait datasets are at the basis of a large share of ecology and evolutionary research, being used to infer ancestral morphologies, quantify species extinction risks, or evaluate the functional diversity of biological communities. These datasets, however, are often plagued by missing data, f...
Главные авторы: | Matthieu Gendre, Torsten Hauffe, Catalina Pimiento, Daniele Silvestro |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Wiley
2024-09-01
|
Серии: | Methods in Ecology and Evolution |
Предметы: | |
Online-ссылка: | https://doi.org/10.1111/2041-210X.14339 |
Схожие документы
-
Missing Data Imputation for Categorical Variables
по: Jaroslav Horníček, и др.
Опубликовано: (2022-09-01) -
Machine Learning Based Missing Data Imputation in Categorical Datasets
по: Muhammad Ishaq, и др.
Опубликовано: (2024-01-01) -
Machine Learning on Biomedical Datasets: Solving the Missing Values Problem without Imputation Methods
по: Marius FERSIGAN, и др.
Опубликовано: (2021-09-01) -
A nonparametric multiple imputation approach for missing categorical data
по: Muhan Zhou, и др.
Опубликовано: (2017-06-01) -
A comparison of imputation methods for categorical data
по: Shaheen MZ. Memon, и др.
Опубликовано: (2023-01-01)