Investigating the influence of reflective materials on indoor thermal environment and solar reflectance in buildings

This in-depth study explores the intricate dynamics of reflective materials, emphasizing their impact on the indoor thermal environment and urban heat island (UHI) mitigation. Examining diffuse highly reflective (DHR), general reflective (GR), and retro-reflective (RR) materials on a simplified buil...

Full description

Bibliographic Details
Main Authors: Jihui Yuan, Yasuhiro Shimazaki, Masaki Tajima, Shaoyu Sheng, Zhichao Jiao, Marko Bizjak
Format: Article
Language:English
Published: Elsevier 2024-05-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X24003642
Description
Summary:This in-depth study explores the intricate dynamics of reflective materials, emphasizing their impact on the indoor thermal environment and urban heat island (UHI) mitigation. Examining diffuse highly reflective (DHR), general reflective (GR), and retro-reflective (RR) materials on a simplified building model during summer days, the research utilizes outdoor experiments to analyze air and surface temperatures, as well as solar radiation. Prioritizing key metrics—mean radiant temperature (MRT), operative temperature (OT), and solar reflectance (ρ)—the study uncovers nuanced distinctions in DHR, GR, and RR materials. Solar reflectance calculations consistently show higher values for DHR and RR materials compared to GR material, highlighting reflectance's pivotal role in influencing surface temperatures and indoor thermal environment. When evaluating the impact of exterior wall materials on building temperatures, RR material with a 76% reflectance performs similarly to DHR material (82%). Notably, with a 6% lower reflectance in RR, the temperature contrast between external and internal walls is only about 1.5 °C at its maximum, underscoring RR's effectiveness as an outer wall material for UHI mitigation and building energy conservation, surpassing both DHR and GR materials.
ISSN:2214-157X