Nonlocal generalized quantum measurements of bipartite spin products without maximal entanglement

Measuring a nonlocal observable on a space-like separated quantum system is a resource-hungry and experimentally challenging task. Several theoretical measurement schemes have already been proposed to increase its feasibility, using a shared maximally-entangled ancilla. We present a new approach to...

Full description

Bibliographic Details
Main Authors: P Vidil, K Edamatsu
Format: Article
Language:English
Published: IOP Publishing 2021-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/abee3f
Description
Summary:Measuring a nonlocal observable on a space-like separated quantum system is a resource-hungry and experimentally challenging task. Several theoretical measurement schemes have already been proposed to increase its feasibility, using a shared maximally-entangled ancilla. We present a new approach to this problem, using the language of generalized quantum measurements, to show that it is actually possible to measure a nonlocal spin product observable without necessarily requiring a maximally-entangled ancilla. This approach opens the door to more economical arbitrary-strength nonlocal measurements, with applications ranging from nonlocal weak values to possible new tests of Bell inequalities. The relation between measurement strength and the amount of ancillary entanglement needed is made explicit, bringing a new perspective on the links that tie quantum nonlocality, entanglement and information transmission together.
ISSN:1367-2630