Summary: | Objective: To characterize a neuron-enriched primary TG culture and evaluate interferon- β expression and activity after HSV-1 infection. Materials and methods: The percentage of neurons present in cultures was assessed by neurofilament immunocytochemistry. Cultures were treated with interferon- β and infected with HSV-1, then viral antigen positive cells were counted and interferon- βexpression was assessed by quantitative PCR. Results: The culture contained 15% neurons and 85% non-neuronal cells. A cytopathic effect was observed, associated with high viral spread (72.9% neurons and 48.3% non-neuronal cells were positive for viral antigen). Interferon- β treatment impaired the cytopathic effect and decreased the infected neurons to 16.7% and infected non-neuronal cells to 7.8%. Viral infection at 6 h postinfection significantly increased the interferon- β transcripts by 18.2 fold, while at 18 h postinfection Interferon pre-treatment in infected cultures increased interferon- β transcription by 3.7 fold. Discussion: This culture model contained 15% neurons, which is 10 times higher compared to other reported cultures, and non-neuronal cells comprised 85% of cells in this culture. All types of cells were found to be infected, which is similar to that reported during acute infections in vivo . Additionally, interferon- βdecreased the infected cells, avoiding the cytopathic effect, which is similar to that reported in swine TG cultures. Conclusions: A neuron-enriched primary TG model was characterized. Interferon- β treatment protected cells from cytopathic effects and viral spread, while viral infection up-regulated interferon- β expression. This result means that interferon- β exerts an important antiviral effect against HSV-1 in these cultures.
|