Biotechnology and Solutions: Insect-Pest-Resistance Management for Improvement and Development of Bt Cotton (<i>Gossypium hirsutum</i> L.)

Cotton (<i>Gossypium</i> spp. L.) is a major origin of natural fiber, and is projected at 117 million bales worldwide for 2021/22. A variety of biotic and abiotic stresses have considerable negative impacts on cotton. The significantly decreased applications of chemical insecticidal spra...

Full description

Bibliographic Details
Main Authors: Abdul Razzaq, Muhammad Mubashar Zafar, Arfan Ali, Pengtao Li, Fariha Qadir, Laviza Tuz Zahra, Fiza Shaukat, Abdul Hafeez Laghari, Youlu Yuan, Wankui Gong
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/12/23/4071
Description
Summary:Cotton (<i>Gossypium</i> spp. L.) is a major origin of natural fiber, and is projected at 117 million bales worldwide for 2021/22. A variety of biotic and abiotic stresses have considerable negative impacts on cotton. The significantly decreased applications of chemical insecticidal sprays in the agro-ecosystem have greatly affected the biodiversity and dynamics of primary and secondary insects. Various control measures were taken around the globe to increase production costs. Temperature, drought, and salinity, and biotic stresses such as bacteria, viruses, fungi, nematodes, insects, and mites cause substantial losses to cotton crops. Here, we summarize a number of biotic and abiotic stresses upsetting Bt cotton crop with present and future biotechnology solution strategies that include a refuge strategy, multi-gene pyramiding, the release of sterile insects, seed mixing, RNAi, CRISPR/Cas9, biotic signaling, and the use of bioagents. Surveillance of insect resistance, monitoring of grower compliance, and implementation of remedial actions can lead to the sustainable use of cotton across the globe.
ISSN:2223-7747