Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions.

BACKGROUND: The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA...

Full description

Bibliographic Details
Main Authors: Juan García-Arriaza, José Luis Nájera, Carmen E Gómez, Carlos Oscar S Sorzano, Mariano Esteban
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2010-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2927552?pdf=render
Description
Summary:BACKGROUND: The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1beta, respectively (referred as MVA-B DeltaA41L/DeltaB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B DeltaA41L/DeltaB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4(+) and CD8(+) T cells, with the CD8(+) T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B DeltaA41L/DeltaB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell immune responses. HIV-1-specific CD4(+) T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8(+) T-cell responses, MVA-B DeltaA41L/DeltaB16R induced more GPN-specific CD8(+) T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. CONCLUSIONS/SIGNIFICANCE: These findings revealed that MVA-B and MVA-B DeltaA41L/DeltaB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.
ISSN:1932-6203