New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics

In this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semant...

Full description

Bibliographic Details
Main Authors: Sadullah Bulut, Mesut Karabacak, Hijaz Ahmad, Sameh Askar
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/11/2017
_version_ 1797508368963731456
author Sadullah Bulut
Mesut Karabacak
Hijaz Ahmad
Sameh Askar
author_facet Sadullah Bulut
Mesut Karabacak
Hijaz Ahmad
Sameh Askar
author_sort Sadullah Bulut
collection DOAJ
description In this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mfrac><msup><mi>G</mi><mo>′</mo></msup><mi>G</mi></mfrac><mo>)</mo></mrow></semantics></math></inline-formula>-expansion method under Atangana’s definition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-conformable fractional derivative to obtain the exact solutions of the space–time fractional differential equations, which have attracted the attention of many researchers recently. The method is applied to different versions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-dimensional Kadomtsev–Petviashvili equations and new exact solutions of these equations depending on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> parameter are acquired. If the parameter values in the new solutions obtained are selected appropriately, 2D and 3D graphs are plotted. Thus, the decay and symmetry properties of solitary wave solutions in a nonlocal shallow water wave model are investigated. It is also shown that all such solitary wave solutions are symmetrical on both sides of the apex. In addition, a close relationship is established between symmetric and propagated wave solutions.
first_indexed 2024-03-10T05:01:10Z
format Article
id doaj.art-666571dd87304f148e54946b4198560f
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T05:01:10Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-666571dd87304f148e54946b4198560f2023-11-23T01:43:28ZengMDPI AGSymmetry2073-89942021-10-011311201710.3390/sym13112017New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid DynamicsSadullah Bulut0Mesut Karabacak1Hijaz Ahmad2Sameh Askar3Department of Mathematics, Erzurum Technical University, Erzurum 25050, TurkeyDepartment of Mathematics, Atatürk University, Erzurum 25400, TurkeySection of Mathematics, International Telematic University Uninettuno, 00186 Roma, ItalyDepartment of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaIn this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mfrac><msup><mi>G</mi><mo>′</mo></msup><mi>G</mi></mfrac><mo>)</mo></mrow></semantics></math></inline-formula>-expansion method under Atangana’s definition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-conformable fractional derivative to obtain the exact solutions of the space–time fractional differential equations, which have attracted the attention of many researchers recently. The method is applied to different versions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-dimensional Kadomtsev–Petviashvili equations and new exact solutions of these equations depending on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> parameter are acquired. If the parameter values in the new solutions obtained are selected appropriately, 2D and 3D graphs are plotted. Thus, the decay and symmetry properties of solitary wave solutions in a nonlocal shallow water wave model are investigated. It is also shown that all such solitary wave solutions are symmetrical on both sides of the apex. In addition, a close relationship is established between symmetric and propagated wave solutions.https://www.mdpi.com/2073-8994/13/11/2017<i>β</i>-conformable fractional derivative of Atangana(<i>G</i>′/<i>G</i>)-expansion methodspace–time fractional differential equationswave solution
spellingShingle Sadullah Bulut
Mesut Karabacak
Hijaz Ahmad
Sameh Askar
New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
Symmetry
<i>β</i>-conformable fractional derivative of Atangana
(<i>G</i>′/<i>G</i>)-expansion method
space–time fractional differential equations
wave solution
title New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_full New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_fullStr New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_full_unstemmed New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_short New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_sort new solitary and periodic wave solutions of n 1 dimensional fractional order equations modeling fluid dynamics
topic <i>β</i>-conformable fractional derivative of Atangana
(<i>G</i>′/<i>G</i>)-expansion method
space–time fractional differential equations
wave solution
url https://www.mdpi.com/2073-8994/13/11/2017
work_keys_str_mv AT sadullahbulut newsolitaryandperiodicwavesolutionsofn1dimensionalfractionalorderequationsmodelingfluiddynamics
AT mesutkarabacak newsolitaryandperiodicwavesolutionsofn1dimensionalfractionalorderequationsmodelingfluiddynamics
AT hijazahmad newsolitaryandperiodicwavesolutionsofn1dimensionalfractionalorderequationsmodelingfluiddynamics
AT samehaskar newsolitaryandperiodicwavesolutionsofn1dimensionalfractionalorderequationsmodelingfluiddynamics