Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites

Ruddlesden-Popper perovskites are highly attractive for light-emitting and photonic applications. In these exceptionally deformable frameworks, structural properties strongly impact on the energetic landscape of the material; thus, it is crucial to establish a correlation between the structure and o...

Full description

Bibliographic Details
Main Authors: D. Cortecchia, S. Neutzner, J. Yin, T. Salim, A. R. Srimath Kandada, A. Bruno, Y. M. Lam, J. Martí-Rujas, A. Petrozza, C. Soci
Format: Article
Language:English
Published: AIP Publishing LLC 2018-11-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/1.5045782
Description
Summary:Ruddlesden-Popper perovskites are highly attractive for light-emitting and photonic applications. In these exceptionally deformable frameworks, structural properties strongly impact on the energetic landscape of the material; thus, it is crucial to establish a correlation between the structure and optoelectronic characteristics. Here, we study the structural transformations induced by phase transitions in the butylammonium-based series (BA)2(MA)n−1[PbnI3n+1] (n = 1 and n = 2). We show how thermally driven lattice contraction and changes in crystal packing affect their characteristic absorption and photoluminescence. These findings provide new insights for functional perovskites’ rational design, highlighting the possibility to tune the structural properties through external stimuli to control their functionalities on-demand.
ISSN:2166-532X