Proximal tibial morphology and risk of posterior tibial cortex impingement in patients with AA-sized Oxford unicompartmental knee arthroplasty tibial implants

Abstract Background In cases of Oxford unicompartmental knee arthroplasty (UKA), an increase in anteroposterior and medial-lateral length is usually disproportional when comparing AA and A-sized tibial components. Asynchronous increments may cause tibial keel impingement leading to complications. Me...

Full description

Bibliographic Details
Main Authors: Jiun-Ran Charng, Alvin Chao-Yu Chen, Yi-Shen Chan, Kuo Yao Hsu, Chen-Te Wu
Format: Article
Language:English
Published: BMC 2020-09-01
Series:Journal of Orthopaedic Surgery and Research
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13018-020-01900-6
Description
Summary:Abstract Background In cases of Oxford unicompartmental knee arthroplasty (UKA), an increase in anteroposterior and medial-lateral length is usually disproportional when comparing AA and A-sized tibial components. Asynchronous increments may cause tibial keel impingement leading to complications. Methods Radiographic measurements were performed in five patients with AA-sized tibial implants. The posterior cortex of proximal tibia had two angles recorded as ∠ M1 and ∠ M2. The minimum distance between the tibial component keel and outer margin of the posterior tibial cortex (mDKC) was measured, and the correlation between the preoperative posterior slope angle (PSA), ∠ M1, and mDKC was analyzed. Results All patients showed an acceptable component positioning. Only one patient had an mDKC of < 4 mm that fulfilled the criteria for the posterior tibial cortex at risk. The patient had an increased PSA and ∠ M1 compared to other patients. A negative correlation was found between preoperative PSA and mDKC (r = − 0.935, p = 0.0193); and ∠ M1 and mDKC (r = − 0.969, p = 0.0032). However, no stem tip pain, periprosthetic fracture, or component loosening were observed. Conclusions The distance between the tibial keel and posterior tibial cortex was reduced in AA-sized patients with a large PSA and ∠M1; therefore, the risk of the tibial cortex injury should be considered.
ISSN:1749-799X