STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE

The urban road network extraction process can be simplified by firstly detecting regions corresponding to streets, allowing a substantial reduction of the search area. As a result, the extraction process is benefited in two aspects: the computational complexity and the reliability. This paper aims a...

Full description

Bibliographic Details
Main Authors: T. S. G. Mendes, A. P. Dal Poz
Format: Article
Language:English
Published: Copernicus Publications 2013-04-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-3-W22/197/2011/isprsarchives-XXXVIII-3-W22-197-2011.pdf
Description
Summary:The urban road network extraction process can be simplified by firstly detecting regions corresponding to streets, allowing a substantial reduction of the search area. As a result, the extraction process is benefited in two aspects: the computational complexity and the reliability. This paper aims at detecting street regions using only data obtained by Laser Scanner Systems. A sequence of standard image processing techniques is used to process height and intensity laser scanner data. A normalized Digital Surface Model is derived from height laser scanner data, from which regions corresponding to aboveground objects (mainly trees and buildings) are detected. Next, detected tree regions are eliminated from the aboveground regions, remaining only buildings. Then, morphological operators are applied in order to obtain elongated street ribbons and homogeneous block regions. Street regions are also detected in the intensity image. The results obtained from the radiometric and geometric laser scanner data are combined, allowing the elimination of non-street regions and the improvement of the geometry of region boundaries. The experimental results showed that the methodology proved to be efficient to detect street regions.
ISSN:1682-1750
2194-9034