METHODOLOGY FOR HIGH-FIDELITY DETERMINISTIC MODELLING OF SWISS LWR FUEL ASSEMBLIES

The main goal of this work is to perform pin-by-pin calculations of Swiss LWR fuel assemblies with neutron transport deterministic methods. At Paul Scherrer Institut (PSI), LWR calculations are performed with the core management system CMSYS, which is based on the Studsvik suite of codes. CMSYS incl...

Full description

Bibliographic Details
Main Authors: Bernal A., Pecchia M., Rochman D., Vasiliev A., Ferroukhi H.
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Subjects:
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_06011.pdf
_version_ 1818574368006995968
author Bernal A.
Pecchia M.
Rochman D.
Vasiliev A.
Ferroukhi H.
author_facet Bernal A.
Pecchia M.
Rochman D.
Vasiliev A.
Ferroukhi H.
author_sort Bernal A.
collection DOAJ
description The main goal of this work is to perform pin-by-pin calculations of Swiss LWR fuel assemblies with neutron transport deterministic methods. At Paul Scherrer Institut (PSI), LWR calculations are performed with the core management system CMSYS, which is based on the Studsvik suite of codes. CMSYS includes models for all the Swiss reactors validated against a database of experimental information. Moreover, PSI has improved the pin power calculations by developing models of Swiss fuel assemblies for the Monte Carlo code MCNP, with the isotopic compositions obtained from the In-Core Fuel Management data of the Studsvik suite of codes, by using the SNF code. A step forward is to use a neutron code based on fast deterministic neutron transport methods. The method used in this work is based on a planar Method of Characteristics in which the axial coupling is solved by 1D SP3 method. The neutron code used is nTRACER. Thus, the methodology of this work develops nTRACER models of Swiss PWR fuel assemblies, in which the fuel of each pin and axial level is modelled with the isotopic composition obtained from SNF. This methodology was applied to 2D and 3D calculations of a Swiss PWR fuel assembly. However, this method has two main limitations. First, the cross sections libraries of nTRACER lack some of the isotopes obtained by SNF. Fortunately, this work proves that the missing isotopes do not have a strong effect on keff and the power distribution. Second, the 3D models require high computational memory resources, that is, more than 260 Gb. Thus, the nTRACER code was modified, so now it uses only 8 Gb, without any loss of accuracy. Finally, the keff and power results are compared with Monte Carlo calculations obtained by Serpent.
first_indexed 2024-12-15T00:25:40Z
format Article
id doaj.art-669ebc1e30314301afcd5df91ca8d3d5
institution Directory Open Access Journal
issn 2100-014X
language English
last_indexed 2024-12-15T00:25:40Z
publishDate 2021-01-01
publisher EDP Sciences
record_format Article
series EPJ Web of Conferences
spelling doaj.art-669ebc1e30314301afcd5df91ca8d3d52022-12-21T22:42:10ZengEDP SciencesEPJ Web of Conferences2100-014X2021-01-012470601110.1051/epjconf/202124706011epjconf_physor2020_06011METHODOLOGY FOR HIGH-FIDELITY DETERMINISTIC MODELLING OF SWISS LWR FUEL ASSEMBLIESBernal A.Pecchia M.Rochman D.Vasiliev A.Ferroukhi H.The main goal of this work is to perform pin-by-pin calculations of Swiss LWR fuel assemblies with neutron transport deterministic methods. At Paul Scherrer Institut (PSI), LWR calculations are performed with the core management system CMSYS, which is based on the Studsvik suite of codes. CMSYS includes models for all the Swiss reactors validated against a database of experimental information. Moreover, PSI has improved the pin power calculations by developing models of Swiss fuel assemblies for the Monte Carlo code MCNP, with the isotopic compositions obtained from the In-Core Fuel Management data of the Studsvik suite of codes, by using the SNF code. A step forward is to use a neutron code based on fast deterministic neutron transport methods. The method used in this work is based on a planar Method of Characteristics in which the axial coupling is solved by 1D SP3 method. The neutron code used is nTRACER. Thus, the methodology of this work develops nTRACER models of Swiss PWR fuel assemblies, in which the fuel of each pin and axial level is modelled with the isotopic composition obtained from SNF. This methodology was applied to 2D and 3D calculations of a Swiss PWR fuel assembly. However, this method has two main limitations. First, the cross sections libraries of nTRACER lack some of the isotopes obtained by SNF. Fortunately, this work proves that the missing isotopes do not have a strong effect on keff and the power distribution. Second, the 3D models require high computational memory resources, that is, more than 260 Gb. Thus, the nTRACER code was modified, so now it uses only 8 Gb, without any loss of accuracy. Finally, the keff and power results are compared with Monte Carlo calculations obtained by Serpent.https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_06011.pdfpwrsnfntracerdeterministic method
spellingShingle Bernal A.
Pecchia M.
Rochman D.
Vasiliev A.
Ferroukhi H.
METHODOLOGY FOR HIGH-FIDELITY DETERMINISTIC MODELLING OF SWISS LWR FUEL ASSEMBLIES
EPJ Web of Conferences
pwr
snf
ntracer
deterministic method
title METHODOLOGY FOR HIGH-FIDELITY DETERMINISTIC MODELLING OF SWISS LWR FUEL ASSEMBLIES
title_full METHODOLOGY FOR HIGH-FIDELITY DETERMINISTIC MODELLING OF SWISS LWR FUEL ASSEMBLIES
title_fullStr METHODOLOGY FOR HIGH-FIDELITY DETERMINISTIC MODELLING OF SWISS LWR FUEL ASSEMBLIES
title_full_unstemmed METHODOLOGY FOR HIGH-FIDELITY DETERMINISTIC MODELLING OF SWISS LWR FUEL ASSEMBLIES
title_short METHODOLOGY FOR HIGH-FIDELITY DETERMINISTIC MODELLING OF SWISS LWR FUEL ASSEMBLIES
title_sort methodology for high fidelity deterministic modelling of swiss lwr fuel assemblies
topic pwr
snf
ntracer
deterministic method
url https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_06011.pdf
work_keys_str_mv AT bernala methodologyforhighfidelitydeterministicmodellingofswisslwrfuelassemblies
AT pecchiam methodologyforhighfidelitydeterministicmodellingofswisslwrfuelassemblies
AT rochmand methodologyforhighfidelitydeterministicmodellingofswisslwrfuelassemblies
AT vasilieva methodologyforhighfidelitydeterministicmodellingofswisslwrfuelassemblies
AT ferroukhih methodologyforhighfidelitydeterministicmodellingofswisslwrfuelassemblies