Spatial patterns for a predator-prey system with Beddington-DeAngelis functional response and fractional cross-diffusion

In this paper, we investigate a predator-prey system with fractional type cross-diffusion incorporating the Beddington-DeAngelis functional response subjected to the homogeneous Neumann boundary condition. First, by using the maximum principle and the Harnack inequality, we establish a priori estima...

Full description

Bibliographic Details
Main Authors: Pan Xue, Cuiping Ren
Format: Article
Language:English
Published: AIMS Press 2023-06-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023990?viewType=HTML
Description
Summary:In this paper, we investigate a predator-prey system with fractional type cross-diffusion incorporating the Beddington-DeAngelis functional response subjected to the homogeneous Neumann boundary condition. First, by using the maximum principle and the Harnack inequality, we establish a priori estimate for the positive stationary solution. Second, we study the non-existence of non-constant positive solutions mainly by employing the energy integral method and the Poincaré inequality. Finally, we discuss the existence of non-constant positive steady states for suitable large self-diffusion $ d_2 $ or cross-diffusion $ d_4 $ by using the Leray-Schauder degree theory, and the results reveal that the diffusion $ d_2 $ and the fractional type cross-diffusion $ d_4 $ can create spatial patterns.
ISSN:2473-6988