Destabilizing effects on a classic tri-trophic oyster-reef cascade.

How interactions among multiple predators affect the stability of trophic cascades is a topic of special ecological interest. To examine factors affecting the stability of the classic tri-trophic oyster reef cascade within a different context, configurations of three predators, including the Gulf to...

Full description

Bibliographic Details
Main Authors: Virginia R Schweiss, Chet F Rakocinski
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0242965
_version_ 1819027887233171456
author Virginia R Schweiss
Chet F Rakocinski
author_facet Virginia R Schweiss
Chet F Rakocinski
author_sort Virginia R Schweiss
collection DOAJ
description How interactions among multiple predators affect the stability of trophic cascades is a topic of special ecological interest. To examine factors affecting the stability of the classic tri-trophic oyster reef cascade within a different context, configurations of three predators, including the Gulf toadfish, Gulf stone crab, and oystershell mud crab, were manipulated together with either oyster shell or limestone gravel substrate within a multiple predator effects (MPE) experiment. Additionally, a complimentary set of trait-mediated-indirect interaction (TMII) experiments examined the inhibition of oyster consumption relative to mud-crab size and top predator identity in the absence of other cues and factors. The classic tri-trophic cascade formed by the toadfish-mud crab-oyster configuration was potentially weakened by several interactions within the MPE experiment. Consumption of oysters and mud crabs by the intraguild stone crab was undeterred by the presence of toadfish. Although mud crab feeding was inhibited in the presence of both toadfish and stone crabs, estimated non-consumptive effects (NCEs) were weaker for stone crabs in the MPE experiment. Consequently, the total effect was destabilizing when all three predator species were together. Inhibition of mud crab feeding was inversely related to direct predation on mud crabs within the MPE experiment. Complimentary TMII experiments revealed greater inhibition of mud crab feeding in response to stone crabs under sparse conditions. TMII experiments also implied that inhibition of mud crab feeding could have largely accounted for NCEs relative to oysters within the MPE experiment, as opposed to interference by other mud crabs or top predators. An inverse relationship between mud crab size and NCE strength in the TMII experiment disclosed another potentially destabilizing influence on the tri-trophic-cascade. Finally, although habitat complexity generally dampened the consumption of oysters across MPE treatments, complex habitat promoted mud crab feeding in the presence of toadfish alone. This study underscores how ecological interactions can mediate trophic cascades and provides some additional insights into the trophic dynamics of oyster reefs for further testing under natural conditions.
first_indexed 2024-12-21T05:49:36Z
format Article
id doaj.art-66a2bc6eaf9241488a372251505cb7ce
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-21T05:49:36Z
publishDate 2020-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-66a2bc6eaf9241488a372251505cb7ce2022-12-21T19:14:01ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-011512e024296510.1371/journal.pone.0242965Destabilizing effects on a classic tri-trophic oyster-reef cascade.Virginia R SchweissChet F RakocinskiHow interactions among multiple predators affect the stability of trophic cascades is a topic of special ecological interest. To examine factors affecting the stability of the classic tri-trophic oyster reef cascade within a different context, configurations of three predators, including the Gulf toadfish, Gulf stone crab, and oystershell mud crab, were manipulated together with either oyster shell or limestone gravel substrate within a multiple predator effects (MPE) experiment. Additionally, a complimentary set of trait-mediated-indirect interaction (TMII) experiments examined the inhibition of oyster consumption relative to mud-crab size and top predator identity in the absence of other cues and factors. The classic tri-trophic cascade formed by the toadfish-mud crab-oyster configuration was potentially weakened by several interactions within the MPE experiment. Consumption of oysters and mud crabs by the intraguild stone crab was undeterred by the presence of toadfish. Although mud crab feeding was inhibited in the presence of both toadfish and stone crabs, estimated non-consumptive effects (NCEs) were weaker for stone crabs in the MPE experiment. Consequently, the total effect was destabilizing when all three predator species were together. Inhibition of mud crab feeding was inversely related to direct predation on mud crabs within the MPE experiment. Complimentary TMII experiments revealed greater inhibition of mud crab feeding in response to stone crabs under sparse conditions. TMII experiments also implied that inhibition of mud crab feeding could have largely accounted for NCEs relative to oysters within the MPE experiment, as opposed to interference by other mud crabs or top predators. An inverse relationship between mud crab size and NCE strength in the TMII experiment disclosed another potentially destabilizing influence on the tri-trophic-cascade. Finally, although habitat complexity generally dampened the consumption of oysters across MPE treatments, complex habitat promoted mud crab feeding in the presence of toadfish alone. This study underscores how ecological interactions can mediate trophic cascades and provides some additional insights into the trophic dynamics of oyster reefs for further testing under natural conditions.https://doi.org/10.1371/journal.pone.0242965
spellingShingle Virginia R Schweiss
Chet F Rakocinski
Destabilizing effects on a classic tri-trophic oyster-reef cascade.
PLoS ONE
title Destabilizing effects on a classic tri-trophic oyster-reef cascade.
title_full Destabilizing effects on a classic tri-trophic oyster-reef cascade.
title_fullStr Destabilizing effects on a classic tri-trophic oyster-reef cascade.
title_full_unstemmed Destabilizing effects on a classic tri-trophic oyster-reef cascade.
title_short Destabilizing effects on a classic tri-trophic oyster-reef cascade.
title_sort destabilizing effects on a classic tri trophic oyster reef cascade
url https://doi.org/10.1371/journal.pone.0242965
work_keys_str_mv AT virginiarschweiss destabilizingeffectsonaclassictritrophicoysterreefcascade
AT chetfrakocinski destabilizingeffectsonaclassictritrophicoysterreefcascade