Folding lattice proteins with quantum annealing

Quantum annealing is a promising approach for obtaining good approximate solutions to difficult optimization problems. Folding a protein sequence into its minimum-energy structure represents such a problem. For testing new algorithms and technologies for this task, the minimal lattice-based [hydroph...

Full description

Bibliographic Details
Main Authors: Anders Irbäck, Lucas Knuthson, Sandipan Mohanty, Carsten Peterson
Format: Article
Language:English
Published: American Physical Society 2022-10-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.4.043013
_version_ 1797210646716088320
author Anders Irbäck
Lucas Knuthson
Sandipan Mohanty
Carsten Peterson
author_facet Anders Irbäck
Lucas Knuthson
Sandipan Mohanty
Carsten Peterson
author_sort Anders Irbäck
collection DOAJ
description Quantum annealing is a promising approach for obtaining good approximate solutions to difficult optimization problems. Folding a protein sequence into its minimum-energy structure represents such a problem. For testing new algorithms and technologies for this task, the minimal lattice-based [hydrophobic (H) or polar (P) beads] HP model is well suited, as it represents a considerable challenge despite its simplicity. The HP model has favorable interactions between adjacent, not directly bound hydrophobic residues. Here, we develop a novel spin representation for lattice protein folding tailored for quantum annealing. With a distributed encoding onto the lattice, it differs from earlier attempts to fold lattice proteins on quantum annealers, which were based upon chain growth techniques. With our encoding, the Hamiltonian by design has the quadratic structure required for calculations on an Ising-type annealer, without having to introduce any auxiliary spin variables. This property greatly facilitates the study of long chains. The approach is robust to changes in the parameters required to constrain the spin system to chainlike configurations, and performs very well in terms of solution quality. The results are evaluated against existing exact results for HP chains with up to N=30 beads with 100% hit rate, thereby also outperforming classical simulated annealing. In addition, the method allows us to recover the lowest known energies for N=48 and N=64 HP chains, with similar hit rates. These results are obtained by the commonly used hybrid quantum-classical approach. For pure quantum annealing, our method successfully folds an N=14 HP chain. The calculations were performed on a D-Wave Advantage quantum annealer.
first_indexed 2024-04-24T10:13:54Z
format Article
id doaj.art-66b10ba4a32842808cddce82dbad5bf4
institution Directory Open Access Journal
issn 2643-1564
language English
last_indexed 2024-04-24T10:13:54Z
publishDate 2022-10-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj.art-66b10ba4a32842808cddce82dbad5bf42024-04-12T17:25:08ZengAmerican Physical SocietyPhysical Review Research2643-15642022-10-014404301310.1103/PhysRevResearch.4.043013Folding lattice proteins with quantum annealingAnders IrbäckLucas KnuthsonSandipan MohantyCarsten PetersonQuantum annealing is a promising approach for obtaining good approximate solutions to difficult optimization problems. Folding a protein sequence into its minimum-energy structure represents such a problem. For testing new algorithms and technologies for this task, the minimal lattice-based [hydrophobic (H) or polar (P) beads] HP model is well suited, as it represents a considerable challenge despite its simplicity. The HP model has favorable interactions between adjacent, not directly bound hydrophobic residues. Here, we develop a novel spin representation for lattice protein folding tailored for quantum annealing. With a distributed encoding onto the lattice, it differs from earlier attempts to fold lattice proteins on quantum annealers, which were based upon chain growth techniques. With our encoding, the Hamiltonian by design has the quadratic structure required for calculations on an Ising-type annealer, without having to introduce any auxiliary spin variables. This property greatly facilitates the study of long chains. The approach is robust to changes in the parameters required to constrain the spin system to chainlike configurations, and performs very well in terms of solution quality. The results are evaluated against existing exact results for HP chains with up to N=30 beads with 100% hit rate, thereby also outperforming classical simulated annealing. In addition, the method allows us to recover the lowest known energies for N=48 and N=64 HP chains, with similar hit rates. These results are obtained by the commonly used hybrid quantum-classical approach. For pure quantum annealing, our method successfully folds an N=14 HP chain. The calculations were performed on a D-Wave Advantage quantum annealer.http://doi.org/10.1103/PhysRevResearch.4.043013
spellingShingle Anders Irbäck
Lucas Knuthson
Sandipan Mohanty
Carsten Peterson
Folding lattice proteins with quantum annealing
Physical Review Research
title Folding lattice proteins with quantum annealing
title_full Folding lattice proteins with quantum annealing
title_fullStr Folding lattice proteins with quantum annealing
title_full_unstemmed Folding lattice proteins with quantum annealing
title_short Folding lattice proteins with quantum annealing
title_sort folding lattice proteins with quantum annealing
url http://doi.org/10.1103/PhysRevResearch.4.043013
work_keys_str_mv AT andersirback foldinglatticeproteinswithquantumannealing
AT lucasknuthson foldinglatticeproteinswithquantumannealing
AT sandipanmohanty foldinglatticeproteinswithquantumannealing
AT carstenpeterson foldinglatticeproteinswithquantumannealing