2078

OBJECTIVES/SPECIFIC AIMS: We hypothesize that both NGF and TNF-α contribute to oral cancer pain by upregulating pro-nociceptive inflammatory cytokines. METHODS/STUDY POPULATION: In total, 48 oral cancer patients were evaluated and their pain scores were measured using a validated oral cancer pain qu...

Full description

Bibliographic Details
Main Authors: Yi Ye, Jihwan Kim, Brian L. Schmidt, Donna G. Albertson, Bradley E. Aouizerat
Format: Article
Language:English
Published: Cambridge University Press 2017-09-01
Series:Journal of Clinical and Translational Science
Online Access:https://www.cambridge.org/core/product/identifier/S2059866117001972/type/journal_article
_version_ 1811156785947475968
author Yi Ye
Jihwan Kim
Brian L. Schmidt
Donna G. Albertson
Bradley E. Aouizerat
author_facet Yi Ye
Jihwan Kim
Brian L. Schmidt
Donna G. Albertson
Bradley E. Aouizerat
author_sort Yi Ye
collection DOAJ
description OBJECTIVES/SPECIFIC AIMS: We hypothesize that both NGF and TNF-α contribute to oral cancer pain by upregulating pro-nociceptive inflammatory cytokines. METHODS/STUDY POPULATION: In total, 48 oral cancer patients were evaluated and their pain scores were measured using a validated oral cancer pain questionnaire. Presence of perineural invasion (PNI) was identified from patients’ pathology reports. We utilized The NIH Cancer Genome Atlas (TCGA) Head and Neck Cancer cohort to investigate the association between pain and genes related to NGF, TNF-α, and their receptors (TRKA, P75, TNF-α receptor 1, and TNF-α receptor 2) in oral cancer samples by employing PNI as a surrogate for pain. Demographic characteristics, clinical characteristics, and genes were analyzed using logistic regression models. A xenograft cancer pain model was created by inoculating human oral cancer cells (HSC-3) into the mouse hind paw. Mice (n=6 per group) were treated with anti-NGF alone, anti-TNF-α alone, a combination of anti-NGF and anti-TNF-α, or PBS (vehicle control). Nociceptive behaviors were measured using an electronic paw withdrawal assay. Paw volume was measured using a plethysmometer. Cytokines in the paw tissues were measured using a multiplex assay kit with 28 cytokines. RESULTS/ANTICIPATED RESULTS: Oral cancer patients with PNI report significantly more pain compared with patients without PNI in our patient cohort (p<0.05). From analysis of TCGA data, we found that PNI is significantly associated with lymphovascular invasion, pathological nodal invasion, and pathological tumor staging (all p<0.05). In adjusted models, we observed that the NGF receptor p75NTR (NGFR) and the TNF-α receptor 1 (TNFRSF1A) were associated with PNI (both p<0.05) and significantly correlated to each other (r=0.25, p<0.001). High levels of TNF-α were present in HSC-3 cell lines and the mouse xenograft cancers. In mice with cancer pain, combined treatment with anti-NGF and anti-TNF-α together provided more effective pain control compared with either anti-NGF or anti-TNF-α treatment alone (p<0.05). We found significantly increased levels of MIP3a, IL-1b, IL-2, IL-4, IL-28b, IL-23, IL17a, IL-31, and IL-33 in cancer mice compared with normal mice (all p<0.05). The combination therapy significantly reduced cytokines MIP3a, IL-1b, IL-4, IL-28b, IL-31, and IL-33 (all p<0.05). DISCUSSION/SIGNIFICANCE OF IMPACT: We show that targeting both NGF and TNF-α provides more effective pain relief in an oral cancer model. These results suggest that therapeutic strategies aimed at both pathways could yield improved pain management for oral cancer patients.
first_indexed 2024-04-10T04:56:58Z
format Article
id doaj.art-66b65c33b9714920beb7e0f02f441e34
institution Directory Open Access Journal
issn 2059-8661
language English
last_indexed 2024-04-10T04:56:58Z
publishDate 2017-09-01
publisher Cambridge University Press
record_format Article
series Journal of Clinical and Translational Science
spelling doaj.art-66b65c33b9714920beb7e0f02f441e342023-03-09T12:30:05ZengCambridge University PressJournal of Clinical and Translational Science2059-86612017-09-011555510.1017/cts.2017.1972078Yi Ye0Jihwan Kim1Brian L. Schmidt2Donna G. Albertson3Bradley E. Aouizerat4H+H Clinical and Translational Science Institute, New York, NY, USAH+H Clinical and Translational Science Institute, New York, NY, USAH+H Clinical and Translational Science Institute, New York, NY, USAH+H Clinical and Translational Science Institute, New York, NY, USAH+H Clinical and Translational Science Institute, New York, NY, USAOBJECTIVES/SPECIFIC AIMS: We hypothesize that both NGF and TNF-α contribute to oral cancer pain by upregulating pro-nociceptive inflammatory cytokines. METHODS/STUDY POPULATION: In total, 48 oral cancer patients were evaluated and their pain scores were measured using a validated oral cancer pain questionnaire. Presence of perineural invasion (PNI) was identified from patients’ pathology reports. We utilized The NIH Cancer Genome Atlas (TCGA) Head and Neck Cancer cohort to investigate the association between pain and genes related to NGF, TNF-α, and their receptors (TRKA, P75, TNF-α receptor 1, and TNF-α receptor 2) in oral cancer samples by employing PNI as a surrogate for pain. Demographic characteristics, clinical characteristics, and genes were analyzed using logistic regression models. A xenograft cancer pain model was created by inoculating human oral cancer cells (HSC-3) into the mouse hind paw. Mice (n=6 per group) were treated with anti-NGF alone, anti-TNF-α alone, a combination of anti-NGF and anti-TNF-α, or PBS (vehicle control). Nociceptive behaviors were measured using an electronic paw withdrawal assay. Paw volume was measured using a plethysmometer. Cytokines in the paw tissues were measured using a multiplex assay kit with 28 cytokines. RESULTS/ANTICIPATED RESULTS: Oral cancer patients with PNI report significantly more pain compared with patients without PNI in our patient cohort (p<0.05). From analysis of TCGA data, we found that PNI is significantly associated with lymphovascular invasion, pathological nodal invasion, and pathological tumor staging (all p<0.05). In adjusted models, we observed that the NGF receptor p75NTR (NGFR) and the TNF-α receptor 1 (TNFRSF1A) were associated with PNI (both p<0.05) and significantly correlated to each other (r=0.25, p<0.001). High levels of TNF-α were present in HSC-3 cell lines and the mouse xenograft cancers. In mice with cancer pain, combined treatment with anti-NGF and anti-TNF-α together provided more effective pain control compared with either anti-NGF or anti-TNF-α treatment alone (p<0.05). We found significantly increased levels of MIP3a, IL-1b, IL-2, IL-4, IL-28b, IL-23, IL17a, IL-31, and IL-33 in cancer mice compared with normal mice (all p<0.05). The combination therapy significantly reduced cytokines MIP3a, IL-1b, IL-4, IL-28b, IL-31, and IL-33 (all p<0.05). DISCUSSION/SIGNIFICANCE OF IMPACT: We show that targeting both NGF and TNF-α provides more effective pain relief in an oral cancer model. These results suggest that therapeutic strategies aimed at both pathways could yield improved pain management for oral cancer patients.https://www.cambridge.org/core/product/identifier/S2059866117001972/type/journal_article
spellingShingle Yi Ye
Jihwan Kim
Brian L. Schmidt
Donna G. Albertson
Bradley E. Aouizerat
2078
Journal of Clinical and Translational Science
title 2078
title_full 2078
title_fullStr 2078
title_full_unstemmed 2078
title_short 2078
title_sort 2078
url https://www.cambridge.org/core/product/identifier/S2059866117001972/type/journal_article
work_keys_str_mv AT yiye 2078
AT jihwankim 2078
AT brianlschmidt 2078
AT donnagalbertson 2078
AT bradleyeaouizerat 2078