Canary in the coliform mine: Exploring the industrial application limits of a microbial respiration alarm system.

Fundamental ecological principles of ecosystem-level respiration are extensively applied in greenhouse gas and elemental cycle studies. A laboratory system termed CEMS (Carbon Dioxide Evolution Measurement System), developed to explore microbial biofilm growth and metabolic responses, was evaluated...

Full description

Bibliographic Details
Main Authors: Wendy Stone, Tobi M Louw, Marthinus J Booysen, Gideon M Wolfaardt
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0247910
Description
Summary:Fundamental ecological principles of ecosystem-level respiration are extensively applied in greenhouse gas and elemental cycle studies. A laboratory system termed CEMS (Carbon Dioxide Evolution Measurement System), developed to explore microbial biofilm growth and metabolic responses, was evaluated as an early-warning system for microbial disturbances in industrial settings: in (a) potable water system contamination, and (b) bioreactor inhibition. Respiration was detected as CO2 production, rather than O2 consumption, including aerobic and anaerobic metabolism. Design, thresholds, and benefits of the remote CO2 monitoring technology were described. Headspace CO2 correlated with contamination levels, as well as chemical (R2 > 0.83-0.96) and microbiological water quality indicators (R2 > 0.78-0.88). Detection thresholds were limiting factors in monitoring drinking water to national and international standards (0 CFU/100 mL fecal coliforms) in both open- (>1500 CFU/mL) and closed-loop CO2 measuring regimes (>100 CFU/100 mL). However, closed-loop detection thresholds allow for the detection of significant contamination events, and monitoring less stringent systems such as irrigation water (<100 CFU/mL). Whole-system respiration was effectively harnessed as an early-warning system in bioreactor performance monitoring. Models were used to deconvolute biological CO2 fluctuations from chemical CO2 dynamics, to optimize this real-time, sustainable, low-waste technology, facilitating timeous responses to biological disturbances in bioreactors.
ISSN:1932-6203