Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data

In this article, we study the following noncoercive quasilinear parabolic problem ∂u∂t−diva(x,t,u,∇u)+ν∣u∣s−1u=λ∣u∣p−2u∣x∣p+finQT,u=0onΣT,u(x,0)=u0inΩ,\left\{\begin{array}{ll}\frac{\partial u}{\partial t}-\hspace{0.1em}\text{div}\hspace{0.1em}a\left(x,t,u,\nabla u)+\nu {| u| }^{s-1}u=\lambda \frac{{...

Full description

Bibliographic Details
Main Authors: Ahmedatt Taghi, Hajji Youssef, Hjiaj Hassane
Format: Article
Language:English
Published: De Gruyter 2023-06-01
Series:Nonautonomous Dynamical Systems
Subjects:
Online Access:https://doi.org/10.1515/msds-2022-0168
_version_ 1797795037842505728
author Ahmedatt Taghi
Hajji Youssef
Hjiaj Hassane
author_facet Ahmedatt Taghi
Hajji Youssef
Hjiaj Hassane
author_sort Ahmedatt Taghi
collection DOAJ
description In this article, we study the following noncoercive quasilinear parabolic problem ∂u∂t−diva(x,t,u,∇u)+ν∣u∣s−1u=λ∣u∣p−2u∣x∣p+finQT,u=0onΣT,u(x,0)=u0inΩ,\left\{\begin{array}{ll}\frac{\partial u}{\partial t}-\hspace{0.1em}\text{div}\hspace{0.1em}a\left(x,t,u,\nabla u)+\nu {| u| }^{s-1}u=\lambda \frac{{| u| }^{p-2}u}{{| x| }^{p}}+f& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{Q}_{T},\\ u=0& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}{\Sigma }_{T},\\ u\left(x,0)={u}_{0}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\end{array}\right. with f∈L1(QT)f\in {L}^{1}\left({Q}_{T}) and u0∈L1(Ω){u}_{0}\in {L}^{1}\left(\Omega ) and show the existence of entropy solutions for this noncoercive parabolic problem with Hardy potential and L1-data.
first_indexed 2024-03-13T03:11:50Z
format Article
id doaj.art-66cf5959782640bb8940f45c1c449dc0
institution Directory Open Access Journal
issn 2353-0626
language English
last_indexed 2024-03-13T03:11:50Z
publishDate 2023-06-01
publisher De Gruyter
record_format Article
series Nonautonomous Dynamical Systems
spelling doaj.art-66cf5959782640bb8940f45c1c449dc02023-06-26T10:46:54ZengDe GruyterNonautonomous Dynamical Systems2353-06262023-06-0110136237710.1515/msds-2022-0168Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-dataAhmedatt Taghi0Hajji Youssef1Hjiaj Hassane2Department of Mathematics and Computer Science, Laboratory G3A, Faculty of Sciences and Technology, University of Nouakchott, P. Box 880 Nouakchott, MauritaniaDepartment of Mathematics, Faculty of Sciences, University Abdelmalek Essaadi, BP 2121, Tetouan, MoroccoDepartment of Mathematics, Faculty of Sciences, University Abdelmalek Essaadi, BP 2121, Tetouan, MoroccoIn this article, we study the following noncoercive quasilinear parabolic problem ∂u∂t−diva(x,t,u,∇u)+ν∣u∣s−1u=λ∣u∣p−2u∣x∣p+finQT,u=0onΣT,u(x,0)=u0inΩ,\left\{\begin{array}{ll}\frac{\partial u}{\partial t}-\hspace{0.1em}\text{div}\hspace{0.1em}a\left(x,t,u,\nabla u)+\nu {| u| }^{s-1}u=\lambda \frac{{| u| }^{p-2}u}{{| x| }^{p}}+f& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{Q}_{T},\\ u=0& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}{\Sigma }_{T},\\ u\left(x,0)={u}_{0}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\end{array}\right. with f∈L1(QT)f\in {L}^{1}\left({Q}_{T}) and u0∈L1(Ω){u}_{0}\in {L}^{1}\left(\Omega ) and show the existence of entropy solutions for this noncoercive parabolic problem with Hardy potential and L1-data.https://doi.org/10.1515/msds-2022-0168quasilinear parabolic equationsnoncoercive equationshardy potentialentropy solutions35k1035k59
spellingShingle Ahmedatt Taghi
Hajji Youssef
Hjiaj Hassane
Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data
Nonautonomous Dynamical Systems
quasilinear parabolic equations
noncoercive equations
hardy potential
entropy solutions
35k10
35k59
title Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data
title_full Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data
title_fullStr Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data
title_full_unstemmed Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data
title_short Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data
title_sort quasilinear class of noncoercive parabolic problems with hardy potential and l1 data
topic quasilinear parabolic equations
noncoercive equations
hardy potential
entropy solutions
35k10
35k59
url https://doi.org/10.1515/msds-2022-0168
work_keys_str_mv AT ahmedatttaghi quasilinearclassofnoncoerciveparabolicproblemswithhardypotentialandl1data
AT hajjiyoussef quasilinearclassofnoncoerciveparabolicproblemswithhardypotentialandl1data
AT hjiajhassane quasilinearclassofnoncoerciveparabolicproblemswithhardypotentialandl1data