A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology

Engineered plant cell lines have the potential to achieve enhanced metabolite production rates, providing a high-yielding source of compounds of interest. Improving the production of taxanes, pharmacologically valuable secondary metabolites of Taxus spp., is hindered by an incomplete knowledge of th...

Full description

Bibliographic Details
Main Authors: Raul Sanchez-Muñoz, Edgar Perez-Mata, Lorena Almagro, Rosa M. Cusido, Mercedes Bonfill, Javier Palazon, Elisabeth Moyano
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-05-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fbioe.2020.00410/full
_version_ 1818419848192983040
author Raul Sanchez-Muñoz
Edgar Perez-Mata
Lorena Almagro
Rosa M. Cusido
Mercedes Bonfill
Javier Palazon
Elisabeth Moyano
author_facet Raul Sanchez-Muñoz
Edgar Perez-Mata
Lorena Almagro
Rosa M. Cusido
Mercedes Bonfill
Javier Palazon
Elisabeth Moyano
author_sort Raul Sanchez-Muñoz
collection DOAJ
description Engineered plant cell lines have the potential to achieve enhanced metabolite production rates, providing a high-yielding source of compounds of interest. Improving the production of taxanes, pharmacologically valuable secondary metabolites of Taxus spp., is hindered by an incomplete knowledge of the taxane biosynthetic pathway. Of the five unknown steps, three are thought to involve cytochrome P450-like hydroxylases. In the current work, after an in-depth in silico characterization of four candidate enzymes proposed in a previous cDNA-AFLP assay, TB506 was selected as a candidate for the hydroxylation of the taxane side chain. A docking assay indicated TB506 is active after the attachment of the side chain based on its affinity to the ligand 3′N-dehydroxydebenzoyltaxol. Finally, the involvement of TB506 in the last hydroxylation step of the paclitaxel biosynthetic pathway was confirmed by functional assays. The identification of this hydroxylase will contribute to the development of alternative sustainable paclitaxel production systems using synthetic biology techniques.
first_indexed 2024-12-14T12:45:05Z
format Article
id doaj.art-66e86be3ae0d4c358df2d92dea3e4c51
institution Directory Open Access Journal
issn 2296-4185
language English
last_indexed 2024-12-14T12:45:05Z
publishDate 2020-05-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Bioengineering and Biotechnology
spelling doaj.art-66e86be3ae0d4c358df2d92dea3e4c512022-12-21T23:00:48ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852020-05-01810.3389/fbioe.2020.00410538792A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic BiologyRaul Sanchez-Muñoz0Edgar Perez-Mata1Lorena Almagro2Rosa M. Cusido3Mercedes Bonfill4Javier Palazon5Elisabeth Moyano6Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, SpainSecció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, SpainDepartamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, SpainSecció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, SpainSecció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, SpainSecció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, SpainDepartament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, SpainEngineered plant cell lines have the potential to achieve enhanced metabolite production rates, providing a high-yielding source of compounds of interest. Improving the production of taxanes, pharmacologically valuable secondary metabolites of Taxus spp., is hindered by an incomplete knowledge of the taxane biosynthetic pathway. Of the five unknown steps, three are thought to involve cytochrome P450-like hydroxylases. In the current work, after an in-depth in silico characterization of four candidate enzymes proposed in a previous cDNA-AFLP assay, TB506 was selected as a candidate for the hydroxylation of the taxane side chain. A docking assay indicated TB506 is active after the attachment of the side chain based on its affinity to the ligand 3′N-dehydroxydebenzoyltaxol. Finally, the involvement of TB506 in the last hydroxylation step of the paclitaxel biosynthetic pathway was confirmed by functional assays. The identification of this hydroxylase will contribute to the development of alternative sustainable paclitaxel production systems using synthetic biology techniques.https://www.frontiersin.org/article/10.3389/fbioe.2020.00410/fulltaxane hydroxylasepaclitaxelprotoplasts transfectioncytochrome P450biotechnological productionbiotransformation
spellingShingle Raul Sanchez-Muñoz
Edgar Perez-Mata
Lorena Almagro
Rosa M. Cusido
Mercedes Bonfill
Javier Palazon
Elisabeth Moyano
A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology
Frontiers in Bioengineering and Biotechnology
taxane hydroxylase
paclitaxel
protoplasts transfection
cytochrome P450
biotechnological production
biotransformation
title A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology
title_full A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology
title_fullStr A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology
title_full_unstemmed A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology
title_short A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology
title_sort novel hydroxylation step in the taxane biosynthetic pathway a new approach to paclitaxel production by synthetic biology
topic taxane hydroxylase
paclitaxel
protoplasts transfection
cytochrome P450
biotechnological production
biotransformation
url https://www.frontiersin.org/article/10.3389/fbioe.2020.00410/full
work_keys_str_mv AT raulsanchezmunoz anovelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT edgarperezmata anovelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT lorenaalmagro anovelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT rosamcusido anovelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT mercedesbonfill anovelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT javierpalazon anovelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT elisabethmoyano anovelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT raulsanchezmunoz novelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT edgarperezmata novelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT lorenaalmagro novelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT rosamcusido novelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT mercedesbonfill novelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT javierpalazon novelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology
AT elisabethmoyano novelhydroxylationstepinthetaxanebiosyntheticpathwayanewapproachtopaclitaxelproductionbysyntheticbiology