Development of Colorimetric and Ratiometric Fluorescence Membranes for Detection of Nitrate in the Presence of Aluminum-Containing Compounds

In this study, a quantitative analysis of nitrate in aqueous solution was performed through the combination of an oxazine170 perchlorate–ethyl cellulose (O17-EC) membrane with aluminum-containing compounds. Aluminum of Devarda’s alloy (DA) or a clay hydrotalcite (HT) was employed...

Full description

Bibliographic Details
Main Authors: Hong Dinh Duong, Han Lae Kim, Jong Il Rhee
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/9/2883
Description
Summary:In this study, a quantitative analysis of nitrate in aqueous solution was performed through the combination of an oxazine170 perchlorate–ethyl cellulose (O17-EC) membrane with aluminum-containing compounds. Aluminum of Devarda’s alloy (DA) or a clay hydrotalcite (HT) was employed for the reduction of nitrate to produce ammonia, and the produced ammonia was detected by the O17-EC membrane. The method of combining the O17-EC membrane with aluminum compounds has showed a broad detection range of nitrate. That is, the DA was combined with the O17-EC membrane and showed the linear nitrate detection ranges of 1–10 mM and 10–100 mM, while the O17-EC membrane immobilized with the clay HT showed a linear detection range of 0.1–1 mM nitrate. The visual color transition of the nitrate-sensing membranes at different nitrate concentrations was clearly observed under sunlight or irradiation of a light-emitting diode (LED) at an excitation wavelength of 470 nm (LED470).
ISSN:1424-8220