A Magnetic Beads-Based Sandwich Chemiluminescence Enzyme Immunoassay for the Rapid and Automatic Detection of Lactoferrin in Milk

Lactoferrin (LF), an iron-binding glycoprotein with immunological properties and a high nutritional value, has emerged as a prominent research focus in the field of food nutrition. Lactoferrin is widely distributed in raw milk and milk that has undergone low-temperature heat treatment during pasteur...

Full description

Bibliographic Details
Main Authors: Wenjie Shen, Zhihong Xuan, Hongmei Liu, Kai Huang, Xiao Guan, Baoyuan Guo
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/13/6/953
Description
Summary:Lactoferrin (LF), an iron-binding glycoprotein with immunological properties and a high nutritional value, has emerged as a prominent research focus in the field of food nutrition. Lactoferrin is widely distributed in raw milk and milk that has undergone low-temperature heat treatment during pasteurization, making its rapid and accurate detection crucial for ensuring the quality control of dairy products. An enzyme-linked immunosorbent assay-based analytical protocol has often been referred to for the detection of LF in real samples. Signal amplification was accomplished using the streptavidin–biotin system. Here, an automated magnetic beads-based sandwich chemiluminescence enzyme immunoassay (MBs-sCLEIA) system was developed for the quantification of lactoferrin in pasteurized milk. The MBs-sCLEIA system consists of an automated chemiluminescence-based analyzer and a lactoferrin MBs-sCLEIA assay kit. Notably, our proposed method eliminates the need for pretreatment procedures and enables the direct addition of milk samples, allowing for the automatic quantitative detection of lactoferrin within a rapid 17 min timeframe for up to eight samples simultaneously. The MBs-sCLEIA was linear over the range of 7.24–800 ng/mL and displayed a limit of detection (LOD) of 2.85 ng/mL. As its good recovery and CV values indicate, the method exhibited high precision and accuracy. Furthermore, it was verified that it was selective towards five additional common milk proteins. A good correlation was observed between the results from the MBs-sCLEIA and heparin affinity column-HPLC (r<sup>2</sup> = 0.99042), which proves to be a useful and practicable way of conducting an accurate analysis of lactoferrin in dairy products.
ISSN:2304-8158