Processes determining the marine alkalinity and calcium carbonate saturation state distributions

We introduce a composite tracer for the marine system, Alk<sup>*</sup>, that has a global distribution primarily determined by CaCO<sub>3</sub> precipitation and dissolution. Alk<sup>*</sup> is also affected by riverine alkalinity from dissolved terrestrial carbon...

Full description

Bibliographic Details
Main Authors: B. R. Carter, J. R. Toggweiler, R. M. Key, J. L. Sarmiento
Format: Article
Language:English
Published: Copernicus Publications 2014-12-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/11/7349/2014/bg-11-7349-2014.pdf
_version_ 1819127409629200384
author B. R. Carter
J. R. Toggweiler
R. M. Key
J. L. Sarmiento
author_facet B. R. Carter
J. R. Toggweiler
R. M. Key
J. L. Sarmiento
author_sort B. R. Carter
collection DOAJ
description We introduce a composite tracer for the marine system, Alk<sup>*</sup>, that has a global distribution primarily determined by CaCO<sub>3</sub> precipitation and dissolution. Alk<sup>*</sup> is also affected by riverine alkalinity from dissolved terrestrial carbonate minerals. We estimate that the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk<sup>*</sup> in the Arctic surface and particularly near river mouths. Strong net carbonate precipitation results in low Alk<sup>*</sup> in subtropical gyres, especially in the Indian and Atlantic oceans. Upwelling of dissolved CaCO<sub>3</sub>-rich deep water elevates North Pacific and Southern Ocean Alk<sup>*</sup>. We use the Alk<sup>*</sup> distribution to estimate the variability of the calcite saturation state resulting from CaCO<sub>3</sub> cycling and other processes. We show that regional differences in surface calcite saturation state are due primarily to the effect of temperature differences on CO<sub>2</sub> solubility and, to a lesser extent, differences in freshwater content and air–sea disequilibria. The variations in net calcium carbonate cycling revealed by Alk<sup>*</sup> play a comparatively minor role in determining the calcium carbonate saturation state.
first_indexed 2024-12-22T08:11:28Z
format Article
id doaj.art-66f1e177be934ec99dbb9035a35213b2
institution Directory Open Access Journal
issn 1726-4170
1726-4189
language English
last_indexed 2024-12-22T08:11:28Z
publishDate 2014-12-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj.art-66f1e177be934ec99dbb9035a35213b22022-12-21T18:33:01ZengCopernicus PublicationsBiogeosciences1726-41701726-41892014-12-0111247349736210.5194/bg-11-7349-2014Processes determining the marine alkalinity and calcium carbonate saturation state distributionsB. R. Carter0J. R. Toggweiler1R. M. Key2J. L. Sarmiento3Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USAGeophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, P.O. Box 308, Princeton NJ, 08542, USAAtmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USAAtmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USAWe introduce a composite tracer for the marine system, Alk<sup>*</sup>, that has a global distribution primarily determined by CaCO<sub>3</sub> precipitation and dissolution. Alk<sup>*</sup> is also affected by riverine alkalinity from dissolved terrestrial carbonate minerals. We estimate that the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk<sup>*</sup> in the Arctic surface and particularly near river mouths. Strong net carbonate precipitation results in low Alk<sup>*</sup> in subtropical gyres, especially in the Indian and Atlantic oceans. Upwelling of dissolved CaCO<sub>3</sub>-rich deep water elevates North Pacific and Southern Ocean Alk<sup>*</sup>. We use the Alk<sup>*</sup> distribution to estimate the variability of the calcite saturation state resulting from CaCO<sub>3</sub> cycling and other processes. We show that regional differences in surface calcite saturation state are due primarily to the effect of temperature differences on CO<sub>2</sub> solubility and, to a lesser extent, differences in freshwater content and air–sea disequilibria. The variations in net calcium carbonate cycling revealed by Alk<sup>*</sup> play a comparatively minor role in determining the calcium carbonate saturation state.http://www.biogeosciences.net/11/7349/2014/bg-11-7349-2014.pdf
spellingShingle B. R. Carter
J. R. Toggweiler
R. M. Key
J. L. Sarmiento
Processes determining the marine alkalinity and calcium carbonate saturation state distributions
Biogeosciences
title Processes determining the marine alkalinity and calcium carbonate saturation state distributions
title_full Processes determining the marine alkalinity and calcium carbonate saturation state distributions
title_fullStr Processes determining the marine alkalinity and calcium carbonate saturation state distributions
title_full_unstemmed Processes determining the marine alkalinity and calcium carbonate saturation state distributions
title_short Processes determining the marine alkalinity and calcium carbonate saturation state distributions
title_sort processes determining the marine alkalinity and calcium carbonate saturation state distributions
url http://www.biogeosciences.net/11/7349/2014/bg-11-7349-2014.pdf
work_keys_str_mv AT brcarter processesdeterminingthemarinealkalinityandcalciumcarbonatesaturationstatedistributions
AT jrtoggweiler processesdeterminingthemarinealkalinityandcalciumcarbonatesaturationstatedistributions
AT rmkey processesdeterminingthemarinealkalinityandcalciumcarbonatesaturationstatedistributions
AT jlsarmiento processesdeterminingthemarinealkalinityandcalciumcarbonatesaturationstatedistributions