Positive solutions for classes of multiparameter elliptic semipositone problems

We study positive solutions to multiparameter boundary-value problems of the form egin{gather*} - Delta u =lambda g(u)+mu f(u)quad ext{in } Omega \ u =0 quad ext{on } partial Omega , end{gather*} where $lambda >0$, $mu >0$, $Omega subseteq R^{n}$; $ngeq 2$ is a smooth bounded domai...

Full description

Bibliographic Details
Main Authors: Sumalee Unsurangsie, Ratnasingham Shivaji, Alfonso Castro, Scott Caldwell
Format: Article
Language:English
Published: Texas State University 2007-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2007/96/abstr.html
_version_ 1818187485891526656
author Sumalee Unsurangsie
Ratnasingham Shivaji
Alfonso Castro
Scott Caldwell
author_facet Sumalee Unsurangsie
Ratnasingham Shivaji
Alfonso Castro
Scott Caldwell
author_sort Sumalee Unsurangsie
collection DOAJ
description We study positive solutions to multiparameter boundary-value problems of the form egin{gather*} - Delta u =lambda g(u)+mu f(u)quad ext{in } Omega \ u =0 quad ext{on } partial Omega , end{gather*} where $lambda >0$, $mu >0$, $Omega subseteq R^{n}$; $ngeq 2$ is a smooth bounded domain with $partial Omega $ in class $C^{2}$ and $Delta $ is the Laplacian operator. In particular, we assume $g(0)>0$ and superlinear while $f(0)<0$, sublinear, and eventually strictly positive. For fixed $mu$, we establish existence and multiplicity for $lambda $ small, and nonexistence for $lambda $ large. Our proofs are based on variational methods, the Mountain Pass Lemma, and sub-super solutions.
first_indexed 2024-12-11T23:11:47Z
format Article
id doaj.art-66f3b005b0ea4cd8b4cc4adeacfa17db
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-11T23:11:47Z
publishDate 2007-06-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-66f3b005b0ea4cd8b4cc4adeacfa17db2022-12-22T00:46:41ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912007-06-01200796110Positive solutions for classes of multiparameter elliptic semipositone problemsSumalee UnsurangsieRatnasingham ShivajiAlfonso CastroScott CaldwellWe study positive solutions to multiparameter boundary-value problems of the form egin{gather*} - Delta u =lambda g(u)+mu f(u)quad ext{in } Omega \ u =0 quad ext{on } partial Omega , end{gather*} where $lambda >0$, $mu >0$, $Omega subseteq R^{n}$; $ngeq 2$ is a smooth bounded domain with $partial Omega $ in class $C^{2}$ and $Delta $ is the Laplacian operator. In particular, we assume $g(0)>0$ and superlinear while $f(0)<0$, sublinear, and eventually strictly positive. For fixed $mu$, we establish existence and multiplicity for $lambda $ small, and nonexistence for $lambda $ large. Our proofs are based on variational methods, the Mountain Pass Lemma, and sub-super solutions.http://ejde.math.txstate.edu/Volumes/2007/96/abstr.htmlPositive solutionsmultiparametersmountain pass lemmasub-super solutionssemipositone
spellingShingle Sumalee Unsurangsie
Ratnasingham Shivaji
Alfonso Castro
Scott Caldwell
Positive solutions for classes of multiparameter elliptic semipositone problems
Electronic Journal of Differential Equations
Positive solutions
multiparameters
mountain pass lemma
sub-super solutions
semipositone
title Positive solutions for classes of multiparameter elliptic semipositone problems
title_full Positive solutions for classes of multiparameter elliptic semipositone problems
title_fullStr Positive solutions for classes of multiparameter elliptic semipositone problems
title_full_unstemmed Positive solutions for classes of multiparameter elliptic semipositone problems
title_short Positive solutions for classes of multiparameter elliptic semipositone problems
title_sort positive solutions for classes of multiparameter elliptic semipositone problems
topic Positive solutions
multiparameters
mountain pass lemma
sub-super solutions
semipositone
url http://ejde.math.txstate.edu/Volumes/2007/96/abstr.html
work_keys_str_mv AT sumaleeunsurangsie positivesolutionsforclassesofmultiparameterellipticsemipositoneproblems
AT ratnasinghamshivaji positivesolutionsforclassesofmultiparameterellipticsemipositoneproblems
AT alfonsocastro positivesolutionsforclassesofmultiparameterellipticsemipositoneproblems
AT scottcaldwell positivesolutionsforclassesofmultiparameterellipticsemipositoneproblems