Positive solutions for classes of multiparameter elliptic semipositone problems
We study positive solutions to multiparameter boundary-value problems of the form egin{gather*} - Delta u =lambda g(u)+mu f(u)quad ext{in } Omega \ u =0 quad ext{on } partial Omega , end{gather*} where $lambda >0$, $mu >0$, $Omega subseteq R^{n}$; $ngeq 2$ is a smooth bounded domai...
Main Authors: | Sumalee Unsurangsie, Ratnasingham Shivaji, Alfonso Castro, Scott Caldwell |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2007-06-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2007/96/abstr.html |
Similar Items
-
Subsolutions: A journey from positone to infinite semipositone problems
by: Eun Kyoung Lee, et al.
Published: (2009-04-01) -
Positive solutions for classes of positone/semipositone systems with multiparameters
by: Rodrigo da Silva Rodrigues
Published: (2013-08-01) -
Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problems
by: Ujjal Das, et al.
Published: (2020-12-01) -
Positive solutions for a semipositone anisotropic p-Laplacian problem
by: A. Razani, et al.
Published: (2024-03-01) -
Nonlinear eigenvalue problems with semipositone structure
by: Alfonso Castro, et al.
Published: (2000-10-01)