Bayesian inference for the log-symmetric autoregressive conditional duration model

Abstract This paper adapts Hamiltonian Monte Carlo methods for application in log-symmetric autoregressive conditional duration models. These recent models are based on a class of log-symmetric distributions. In this class, it is possible to model both median and skewness of the duration time distri...

Full description

Bibliographic Details
Main Authors: JEREMIAS LEÃO, RAFAEL PAIXÃO, HELTON SAULO, THEMIS LEAO
Format: Article
Language:English
Published: Academia Brasileira de Ciências 2021-10-01
Series:Anais da Academia Brasileira de Ciências
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000700305&tlng=en
_version_ 1798021984325468160
author JEREMIAS LEÃO
RAFAEL PAIXÃO
HELTON SAULO
THEMIS LEAO
author_facet JEREMIAS LEÃO
RAFAEL PAIXÃO
HELTON SAULO
THEMIS LEAO
author_sort JEREMIAS LEÃO
collection DOAJ
description Abstract This paper adapts Hamiltonian Monte Carlo methods for application in log-symmetric autoregressive conditional duration models. These recent models are based on a class of log-symmetric distributions. In this class, it is possible to model both median and skewness of the duration time distribution. We use the Bayesian approach to estimate the model parameters of some log-symmetric autoregressive conditional duration models and evaluate their performance using a Monte Carlo simulation study. The usefulness of the estimation methodology is demonstrated by analyzing a high frequency financial data set from the German DAX of 2016.
first_indexed 2024-04-11T17:22:19Z
format Article
id doaj.art-66f5e93aa64b44d883bd60ff94706fdf
institution Directory Open Access Journal
issn 1678-2690
language English
last_indexed 2024-04-11T17:22:19Z
publishDate 2021-10-01
publisher Academia Brasileira de Ciências
record_format Article
series Anais da Academia Brasileira de Ciências
spelling doaj.art-66f5e93aa64b44d883bd60ff94706fdf2022-12-22T04:12:27ZengAcademia Brasileira de CiênciasAnais da Academia Brasileira de Ciências1678-26902021-10-0193410.1590/0001-3765202120190301Bayesian inference for the log-symmetric autoregressive conditional duration modelJEREMIAS LEÃOhttps://orcid.org/0000-0003-1176-0198RAFAEL PAIXÃOhttps://orcid.org/0000-0003-4739-7837HELTON SAULOhttps://orcid.org/0000-0002-4467-8652THEMIS LEAOhttps://orcid.org/0000-0001-7657-974XAbstract This paper adapts Hamiltonian Monte Carlo methods for application in log-symmetric autoregressive conditional duration models. These recent models are based on a class of log-symmetric distributions. In this class, it is possible to model both median and skewness of the duration time distribution. We use the Bayesian approach to estimate the model parameters of some log-symmetric autoregressive conditional duration models and evaluate their performance using a Monte Carlo simulation study. The usefulness of the estimation methodology is demonstrated by analyzing a high frequency financial data set from the German DAX of 2016.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000700305&tlng=enACD modelsBayesian inferencehigh frequency financial datalog-symmetric distributions
spellingShingle JEREMIAS LEÃO
RAFAEL PAIXÃO
HELTON SAULO
THEMIS LEAO
Bayesian inference for the log-symmetric autoregressive conditional duration model
Anais da Academia Brasileira de Ciências
ACD models
Bayesian inference
high frequency financial data
log-symmetric distributions
title Bayesian inference for the log-symmetric autoregressive conditional duration model
title_full Bayesian inference for the log-symmetric autoregressive conditional duration model
title_fullStr Bayesian inference for the log-symmetric autoregressive conditional duration model
title_full_unstemmed Bayesian inference for the log-symmetric autoregressive conditional duration model
title_short Bayesian inference for the log-symmetric autoregressive conditional duration model
title_sort bayesian inference for the log symmetric autoregressive conditional duration model
topic ACD models
Bayesian inference
high frequency financial data
log-symmetric distributions
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000700305&tlng=en
work_keys_str_mv AT jeremiasleao bayesianinferenceforthelogsymmetricautoregressiveconditionaldurationmodel
AT rafaelpaixao bayesianinferenceforthelogsymmetricautoregressiveconditionaldurationmodel
AT heltonsaulo bayesianinferenceforthelogsymmetricautoregressiveconditionaldurationmodel
AT themisleao bayesianinferenceforthelogsymmetricautoregressiveconditionaldurationmodel