A Vision-Based Sensor for Noncontact Structural Displacement Measurement
Conventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/15/7/16557 |
_version_ | 1798034988431572992 |
---|---|
author | Dongming Feng Maria Q. Feng Ekin Ozer Yoshio Fukuda |
author_facet | Dongming Feng Maria Q. Feng Ekin Ozer Yoshio Fukuda |
author_sort | Dongming Feng |
collection | DOAJ |
description | Conventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into a software package for real-time displacement extraction from video images. By simply adjusting the upsampling factor, better subpixel resolution can be easily achieved to improve the measurement accuracy. The performance of the vision sensor is first evaluated through a laboratory shaking table test of a frame structure, in which the displacements at all the floors are measured by using one camera to track either high-contrast artificial targets or low-contrast natural targets on the structural surface such as bolts and nuts. Satisfactory agreements are observed between the displacements measured by the single camera and those measured by high-performance laser displacement sensors. Then field tests are carried out on a railway bridge and a pedestrian bridge, through which the accuracy of the vision sensor in both time and frequency domains is further confirmed in realistic field environments. Significant advantages of the noncontact vision sensor include its low cost, ease of operation, and flexibility to extract structural displacement at any point from a single measurement. |
first_indexed | 2024-04-11T20:51:57Z |
format | Article |
id | doaj.art-66f87f5355c1454983f5c13a0d64f484 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-04-11T20:51:57Z |
publishDate | 2015-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-66f87f5355c1454983f5c13a0d64f4842022-12-22T04:03:49ZengMDPI AGSensors1424-82202015-07-01157165571657510.3390/s150716557s150716557A Vision-Based Sensor for Noncontact Structural Displacement MeasurementDongming Feng0Maria Q. Feng1Ekin Ozer2Yoshio Fukuda3Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USADepartment of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USADepartment of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USADepartment of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USAConventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into a software package for real-time displacement extraction from video images. By simply adjusting the upsampling factor, better subpixel resolution can be easily achieved to improve the measurement accuracy. The performance of the vision sensor is first evaluated through a laboratory shaking table test of a frame structure, in which the displacements at all the floors are measured by using one camera to track either high-contrast artificial targets or low-contrast natural targets on the structural surface such as bolts and nuts. Satisfactory agreements are observed between the displacements measured by the single camera and those measured by high-performance laser displacement sensors. Then field tests are carried out on a railway bridge and a pedestrian bridge, through which the accuracy of the vision sensor in both time and frequency domains is further confirmed in realistic field environments. Significant advantages of the noncontact vision sensor include its low cost, ease of operation, and flexibility to extract structural displacement at any point from a single measurement.http://www.mdpi.com/1424-8220/15/7/16557vision sensordisplacementtemplate matchingupsampled cross correlationsubpixel resolutioncivil engineering structures |
spellingShingle | Dongming Feng Maria Q. Feng Ekin Ozer Yoshio Fukuda A Vision-Based Sensor for Noncontact Structural Displacement Measurement Sensors vision sensor displacement template matching upsampled cross correlation subpixel resolution civil engineering structures |
title | A Vision-Based Sensor for Noncontact Structural Displacement Measurement |
title_full | A Vision-Based Sensor for Noncontact Structural Displacement Measurement |
title_fullStr | A Vision-Based Sensor for Noncontact Structural Displacement Measurement |
title_full_unstemmed | A Vision-Based Sensor for Noncontact Structural Displacement Measurement |
title_short | A Vision-Based Sensor for Noncontact Structural Displacement Measurement |
title_sort | vision based sensor for noncontact structural displacement measurement |
topic | vision sensor displacement template matching upsampled cross correlation subpixel resolution civil engineering structures |
url | http://www.mdpi.com/1424-8220/15/7/16557 |
work_keys_str_mv | AT dongmingfeng avisionbasedsensorfornoncontactstructuraldisplacementmeasurement AT mariaqfeng avisionbasedsensorfornoncontactstructuraldisplacementmeasurement AT ekinozer avisionbasedsensorfornoncontactstructuraldisplacementmeasurement AT yoshiofukuda avisionbasedsensorfornoncontactstructuraldisplacementmeasurement AT dongmingfeng visionbasedsensorfornoncontactstructuraldisplacementmeasurement AT mariaqfeng visionbasedsensorfornoncontactstructuraldisplacementmeasurement AT ekinozer visionbasedsensorfornoncontactstructuraldisplacementmeasurement AT yoshiofukuda visionbasedsensorfornoncontactstructuraldisplacementmeasurement |