Summary: | The composition of the gut microbiota represents an early indicator of chronic post-radiation outcomes in elderly bone and gastrointestinal homeostasis. Fecal microbiota analyses revealed that the relative abundances of <i>Bacteroides massiliensis</i>, <i>Muribaculum</i> sp., or <i>Prevotella denticola</i> were different between conventional microbiota (CM) and anti-inflammatory restricted microbiota (RM). The murine RM was found conditional on mucosa-associated dysbiosis under both, disturbances of interleukin (IL)-17 signaling and exposure to radiation alone. This review discusses the hypothesis that intestinal microbiota induced alterations in DNA repair and expressed transforming growth factor (TGF)-β in the small intestine, thereby impacting bone microstructure and osteoblast dysfunction in silicon ion (1.5 Gy <sup>28</sup>Si ions of 850 MeV/u) irradiated mice. Bacterial microbiota compositions influenced therapeutic approaches, correlated with clinical outcomes in radiotherapy and were associated with alterations of the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infections during the last global pandemics. In the absence of TGF-β, functional metagenomics, cytokine profiles, bacterial community analyses in human and murine mucosa cells, and inflammatory markers in rat intestines were analyzed. This research finally showed radiation-induced osteolytic damage to correlated with specific features of intestinal bacterial composition, and these relationships were expatiated together with radiation effects on normal tissue cell proliferation.
|