Teaching Essential EMG Theory to Kinesiologists and Physical Therapists Using Analogies Visual Descriptions, and Qualitative Analysis of Biophysical Concepts

Electromyography (EMG) is a multidisciplinary field that brings together allied health (kinesiology and physical therapy) and the engineering sciences (biomedical and electrical). Since the physical sciences are used in the measurement of a biological process, the presentation of the theoretical fou...

Full description

Bibliographic Details
Main Author: David A. Gabriel
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/17/6555
Description
Summary:Electromyography (EMG) is a multidisciplinary field that brings together allied health (kinesiology and physical therapy) and the engineering sciences (biomedical and electrical). Since the physical sciences are used in the measurement of a biological process, the presentation of the theoretical foundations of EMG is most conveniently conducted using math and physics. However, given the multidisciplinary nature of EMG, a course will most likely include students from diverse backgrounds, with varying levels of math and physics. This is a pedagogical paper that outlines an approach for teaching foundational concepts in EMG to kinesiologists and physical therapists that uses a combination of analogies, visual descriptions, and qualitative analysis of biophysical concepts to develop an intuitive understanding for those who are new to surface EMG. The approach focuses on muscle fiber action potentials (MFAPs), motor unit action potentials (MUAPs), and compound muscle action potentials (CMAPs) because changes in these waveforms are much easier to identify and describe in comparison to the surface EMG interference pattern (IP).
ISSN:1424-8220