Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting

We present a systematic study on the influence of the miscut orientation on structural and electronic properties in the homoepitaxial growth on off-oriented β-Ga2O3 (100) substrates by metalorganic chemical vapour phase epitaxy. Layers grown on (100) substrates with 6° miscut toward the [001¯] direc...

Full description

Bibliographic Details
Main Authors: R. Schewski, K. Lion, A. Fiedler, C. Wouters, A. Popp, S. V. Levchenko, T. Schulz, M. Schmidbauer, S. Bin Anooz, R. Grüneberg, Z. Galazka, G. Wagner, K. Irmscher, M. Scheffler, C. Draxl, M. Albrecht
Format: Article
Language:English
Published: AIP Publishing LLC 2019-02-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/1.5054943
_version_ 1818652201887727616
author R. Schewski
K. Lion
A. Fiedler
C. Wouters
A. Popp
S. V. Levchenko
T. Schulz
M. Schmidbauer
S. Bin Anooz
R. Grüneberg
Z. Galazka
G. Wagner
K. Irmscher
M. Scheffler
C. Draxl
M. Albrecht
author_facet R. Schewski
K. Lion
A. Fiedler
C. Wouters
A. Popp
S. V. Levchenko
T. Schulz
M. Schmidbauer
S. Bin Anooz
R. Grüneberg
Z. Galazka
G. Wagner
K. Irmscher
M. Scheffler
C. Draxl
M. Albrecht
author_sort R. Schewski
collection DOAJ
description We present a systematic study on the influence of the miscut orientation on structural and electronic properties in the homoepitaxial growth on off-oriented β-Ga2O3 (100) substrates by metalorganic chemical vapour phase epitaxy. Layers grown on (100) substrates with 6° miscut toward the [001¯] direction show high electron mobilities of about 90 cm2 V−1 s−1 at electron concentrations in the range of 1–2 × 1018 cm−3, while layers grown under identical conditions but with 6° miscut toward the [001] direction exhibit low electron mobilities of around 10 cm2 V−1 s−1. By using high-resolution scanning transmission electron microscopy and atomic force microscopy, we find significant differences in the surface morphologies of the substrates after annealing and of the layers in dependence on their miscut direction. While substrates with miscuts toward [001¯] exhibit monolayer steps terminated by (2¯01) facets, mainly bilayer steps are found for miscuts toward [001]. Epitaxial growth on both substrates occurs in step-flow mode. However, while layers on substrates with a miscut toward [001¯] are free of structural defects, those on substrates with a miscut toward [001] are completely twinned with respect to the substrate and show stacking mismatch boundaries. This twinning is promoted at step edges by transformation of the (001)-B facets into (2¯01) facets. Density functional theory calculations of stoichiometric low index surfaces show that the (2¯01) facet has the lowest surface energy following the (100) surface. We conclude that facet transformation at the step edges is driven by surface energy minimization for the two kinds of crystallographically inequivalent miscut orientations in the monoclinic lattice of β-Ga2O3.
first_indexed 2024-12-17T02:18:15Z
format Article
id doaj.art-670ae35a8db24bac89422f6b452c5f51
institution Directory Open Access Journal
issn 2166-532X
language English
last_indexed 2024-12-17T02:18:15Z
publishDate 2019-02-01
publisher AIP Publishing LLC
record_format Article
series APL Materials
spelling doaj.art-670ae35a8db24bac89422f6b452c5f512022-12-21T22:07:19ZengAIP Publishing LLCAPL Materials2166-532X2019-02-0172022515022515-710.1063/1.5054943017992APMStep-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and facetingR. Schewski0K. Lion1A. Fiedler2C. Wouters3A. Popp4S. V. Levchenko5T. Schulz6M. Schmidbauer7S. Bin Anooz8R. Grüneberg9Z. Galazka10G. Wagner11K. Irmscher12M. Scheffler13C. Draxl14M. Albrecht15Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyHumboldt-Universität zu Berlin, Institut für Physik und IRIS, Zum Großen Windkanal 6, D-12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyFritz-Haber-Institut der Max-Planck-Gesellschaft, Theory Department, Faradayweg 4-6, 14195 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyFritz-Haber-Institut der Max-Planck-Gesellschaft, Theory Department, Faradayweg 4-6, 14195 Berlin, GermanyHumboldt-Universität zu Berlin, Institut für Physik und IRIS, Zum Großen Windkanal 6, D-12489 Berlin, GermanyLeibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, GermanyWe present a systematic study on the influence of the miscut orientation on structural and electronic properties in the homoepitaxial growth on off-oriented β-Ga2O3 (100) substrates by metalorganic chemical vapour phase epitaxy. Layers grown on (100) substrates with 6° miscut toward the [001¯] direction show high electron mobilities of about 90 cm2 V−1 s−1 at electron concentrations in the range of 1–2 × 1018 cm−3, while layers grown under identical conditions but with 6° miscut toward the [001] direction exhibit low electron mobilities of around 10 cm2 V−1 s−1. By using high-resolution scanning transmission electron microscopy and atomic force microscopy, we find significant differences in the surface morphologies of the substrates after annealing and of the layers in dependence on their miscut direction. While substrates with miscuts toward [001¯] exhibit monolayer steps terminated by (2¯01) facets, mainly bilayer steps are found for miscuts toward [001]. Epitaxial growth on both substrates occurs in step-flow mode. However, while layers on substrates with a miscut toward [001¯] are free of structural defects, those on substrates with a miscut toward [001] are completely twinned with respect to the substrate and show stacking mismatch boundaries. This twinning is promoted at step edges by transformation of the (001)-B facets into (2¯01) facets. Density functional theory calculations of stoichiometric low index surfaces show that the (2¯01) facet has the lowest surface energy following the (100) surface. We conclude that facet transformation at the step edges is driven by surface energy minimization for the two kinds of crystallographically inequivalent miscut orientations in the monoclinic lattice of β-Ga2O3.http://dx.doi.org/10.1063/1.5054943
spellingShingle R. Schewski
K. Lion
A. Fiedler
C. Wouters
A. Popp
S. V. Levchenko
T. Schulz
M. Schmidbauer
S. Bin Anooz
R. Grüneberg
Z. Galazka
G. Wagner
K. Irmscher
M. Scheffler
C. Draxl
M. Albrecht
Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting
APL Materials
title Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting
title_full Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting
title_fullStr Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting
title_full_unstemmed Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting
title_short Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting
title_sort step flow growth in homoepitaxy of β ga2o3 100 the influence of the miscut direction and faceting
url http://dx.doi.org/10.1063/1.5054943
work_keys_str_mv AT rschewski stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT klion stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT afiedler stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT cwouters stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT apopp stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT svlevchenko stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT tschulz stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT mschmidbauer stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT sbinanooz stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT rgruneberg stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT zgalazka stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT gwagner stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT kirmscher stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT mscheffler stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT cdraxl stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting
AT malbrecht stepflowgrowthinhomoepitaxyofbga2o3100theinfluenceofthemiscutdirectionandfaceting