Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers

Electrospun nanofibers of polyvinyl alcohol (PVA) have poor mechanical strength. As such their use has often been avoided, particularly in applications that require high mechanical properties. The objective of this study is to increase the mechanical properties of PVA nanofiber mats via physical cro...

Full description

Bibliographic Details
Main Authors: Aditya Rianjanu, Ahmad Kusumaatmaja, Eko Agus Suyono, Kuwat Triyana
Format: Article
Language:English
Published: Elsevier 2018-04-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844017325975
Description
Summary:Electrospun nanofibers of polyvinyl alcohol (PVA) have poor mechanical strength. As such their use has often been avoided, particularly in applications that require high mechanical properties. The objective of this study is to increase the mechanical properties of PVA nanofiber mats via physical crosslinking with solvent vapor treatment using organic solvents, dimethyl sulfoxide (DMSO), N, N-dimethyl formamide (DMF), and methanol. The effect of solvent vapor treatment on PVA nanofibers is clearly observed by scanning electron microscope (SEM). The tensile strength increased by over 60%, 90%, and 115% after solvent vapor treatment with DMF at a temperature of 40 °C for 2 h, 4 h, and 8 h, respectively, compared to untreated PVA nanofibers. In addition, Young's modulus of PVA nanofiber mats also increased after DMF treatment. As a comparison, DMSO and methanol were also used in solvent vapor treatment because of differences in their polymer-solvent affinity. Results showed that the highest improvement (100%) in mechanical strength was obtained using DMF. This study shows that solvent vapor treatment offers a simple and inexpensive method that provides excellent results and is a promising alternative treatment for use in increasing the mechanical properties of electrospun nanofibers.
ISSN:2405-8440