Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations

Cold reduces maize (<i>Zea mays</i> L.) production and delays sowings. Cold tolerance in maize is very limited, and breeding maize for cold tolerance is still a major challenge. Our objective was to detect QTL for cold tolerance at germination and seedling stages. We evaluated, under col...

Full description

Bibliographic Details
Main Authors: Pedro Revilla, Ana Butrón, Víctor Manuel Rodriguez, Renaud Rincent, Alain Charcosset, Catherine Giauffret, Albrecht E. Melchinger, Chris-Carolin Schön, Eva Bauer, Thomas Altmann, Dominique Brunel, Jesús Moreno-González, Laura Campo, Milena Ouzunova, Ángel Álvarez, José Ignacio Ruíz de Galarreta, Jacques Laborde, Rosa Ana Malvar
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/13/1/195
_version_ 1797447109313560576
author Pedro Revilla
Ana Butrón
Víctor Manuel Rodriguez
Renaud Rincent
Alain Charcosset
Catherine Giauffret
Albrecht E. Melchinger
Chris-Carolin Schön
Eva Bauer
Thomas Altmann
Dominique Brunel
Jesús Moreno-González
Laura Campo
Milena Ouzunova
Ángel Álvarez
José Ignacio Ruíz de Galarreta
Jacques Laborde
Rosa Ana Malvar
author_facet Pedro Revilla
Ana Butrón
Víctor Manuel Rodriguez
Renaud Rincent
Alain Charcosset
Catherine Giauffret
Albrecht E. Melchinger
Chris-Carolin Schön
Eva Bauer
Thomas Altmann
Dominique Brunel
Jesús Moreno-González
Laura Campo
Milena Ouzunova
Ángel Álvarez
José Ignacio Ruíz de Galarreta
Jacques Laborde
Rosa Ana Malvar
author_sort Pedro Revilla
collection DOAJ
description Cold reduces maize (<i>Zea mays</i> L.) production and delays sowings. Cold tolerance in maize is very limited, and breeding maize for cold tolerance is still a major challenge. Our objective was to detect QTL for cold tolerance at germination and seedling stages. We evaluated, under cold and control conditions, 919 Dent and 1009 Flint inbred lines from two nested association mapping designs consisting in 24 double-haploid populations, genotyped with 56,110 SNPs. We found a large diversity of maize cold tolerance within these NAM populations. We detected one QTL for plant weight and four for fluorescence under cold conditions, as well as one for plant weight and two for chlorophyll content under control conditions in the Dent-NAM. There were fewer significant QTL under control conditions than under cold conditions, and half of the QTL were for quantum efficiency of photosystem II. Our results supported the large genetic discrepancy between optimal and low temperatures, as the quantity and the position of the QTL were very variable between control and cold conditions. Furthermore, as we have not found alleles with significant effects on these NAM designs, further studies are needed with other experimental designs to find favorable alleles with important effects for improving cold tolerance in maize.
first_indexed 2024-03-09T13:51:06Z
format Article
id doaj.art-6738fd67c73f4d0d90e7b4c981929fa9
institution Directory Open Access Journal
issn 2073-4395
language English
last_indexed 2024-03-09T13:51:06Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Agronomy
spelling doaj.art-6738fd67c73f4d0d90e7b4c981929fa92023-11-30T20:50:17ZengMDPI AGAgronomy2073-43952023-01-0113119510.3390/agronomy13010195Genetic Variation for Cold Tolerance in Two Nested Association Mapping PopulationsPedro Revilla0Ana Butrón1Víctor Manuel Rodriguez2Renaud Rincent3Alain Charcosset4Catherine Giauffret5Albrecht E. Melchinger6Chris-Carolin Schön7Eva Bauer8Thomas Altmann9Dominique Brunel10Jesús Moreno-González11Laura Campo12Milena Ouzunova13Ángel Álvarez14José Ignacio Ruíz de Galarreta15Jacques Laborde16Rosa Ana Malvar17Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, SpainMisión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, SpainMisión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, SpainINRA, UMR de Génétique Végétale, Université Paris-Sud–CNRS–AgroParisTech, 91190 Gif-sur-Yvette, FranceINRA, UMR de Génétique Végétale, Université Paris-Sud–CNRS–AgroParisTech, 91190 Gif-sur-Yvette, FranceUnité Mixte de Recherche, Institu National de la Recherche Agronomique, University of Science and Technology, 1281, Stress Abiotiques et Différenciation des Végetaux Cultivés, 59655 Péronne, FranceInstitute of Plant Breeding, Seed Science and Population Genetics, Universität Hohenheim, 70599 Stuttgart, GermanyPlant Breeding, Technische Universität München, 85354 Freising, GermanyPlant Breeding, Technische Universität München, 85354 Freising, GermanyMolecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, GermanyINRA-VERSAILLES, 91057 Evry, FranceCentro Investigacións Agrarias Mabegondo (CIAM), 15318 A Coruña, SpainCentro Investigacións Agrarias Mabegondo (CIAM), 15318 A Coruña, SpainKWS SAAT AG, 37574 Einbeck, GermanyEstación Experimental de Aula Dei (CSIC), 50059 Saragossa, SpainNEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, 01192 Vitoria, SpainINRA, Stn Expt Mais, 40590 St Martin De Hinx, FranceMisión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, SpainCold reduces maize (<i>Zea mays</i> L.) production and delays sowings. Cold tolerance in maize is very limited, and breeding maize for cold tolerance is still a major challenge. Our objective was to detect QTL for cold tolerance at germination and seedling stages. We evaluated, under cold and control conditions, 919 Dent and 1009 Flint inbred lines from two nested association mapping designs consisting in 24 double-haploid populations, genotyped with 56,110 SNPs. We found a large diversity of maize cold tolerance within these NAM populations. We detected one QTL for plant weight and four for fluorescence under cold conditions, as well as one for plant weight and two for chlorophyll content under control conditions in the Dent-NAM. There were fewer significant QTL under control conditions than under cold conditions, and half of the QTL were for quantum efficiency of photosystem II. Our results supported the large genetic discrepancy between optimal and low temperatures, as the quantity and the position of the QTL were very variable between control and cold conditions. Furthermore, as we have not found alleles with significant effects on these NAM designs, further studies are needed with other experimental designs to find favorable alleles with important effects for improving cold tolerance in maize.https://www.mdpi.com/2073-4395/13/1/195cold tolerancemaizeQTLNAMRIL
spellingShingle Pedro Revilla
Ana Butrón
Víctor Manuel Rodriguez
Renaud Rincent
Alain Charcosset
Catherine Giauffret
Albrecht E. Melchinger
Chris-Carolin Schön
Eva Bauer
Thomas Altmann
Dominique Brunel
Jesús Moreno-González
Laura Campo
Milena Ouzunova
Ángel Álvarez
José Ignacio Ruíz de Galarreta
Jacques Laborde
Rosa Ana Malvar
Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations
Agronomy
cold tolerance
maize
QTL
NAM
RIL
title Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations
title_full Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations
title_fullStr Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations
title_full_unstemmed Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations
title_short Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations
title_sort genetic variation for cold tolerance in two nested association mapping populations
topic cold tolerance
maize
QTL
NAM
RIL
url https://www.mdpi.com/2073-4395/13/1/195
work_keys_str_mv AT pedrorevilla geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT anabutron geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT victormanuelrodriguez geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT renaudrincent geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT alaincharcosset geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT catherinegiauffret geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT albrechtemelchinger geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT chriscarolinschon geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT evabauer geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT thomasaltmann geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT dominiquebrunel geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT jesusmorenogonzalez geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT lauracampo geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT milenaouzunova geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT angelalvarez geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT joseignacioruizdegalarreta geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT jacqueslaborde geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations
AT rosaanamalvar geneticvariationforcoldtoleranceintwonestedassociationmappingpopulations