Temperature Distribution and Specific Absorption Rate inside a Child's Eyes from Mobile Phone

This paper represents the numerical analysis of Specific Absorption Rate (SAR) and temperature distribution within the eyes of realistic child head model exposed to mobile phone radiation at the frequency of 4G. The SAR and temperature distribution are obtained by numerical solutions of the equation...

Full description

Bibliographic Details
Main Authors: Vladimir Stanković, Dejan Jovanović, Milan Blagojević, Miomir Raos, Anđela Jevtić
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2023-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/426082
Description
Summary:This paper represents the numerical analysis of Specific Absorption Rate (SAR) and temperature distribution within the eyes of realistic child head model exposed to mobile phone radiation at the frequency of 4G. The SAR and temperature distribution are obtained by numerical solutions of the equation of electromagnetic wave propagation as well as the bioheat equation. The values of SAR and temperature distribution are shown for different biological tissues of the eyes during exposure to electromagnetic radiation from a mobile phone. As electromagnetic properties of tissues depend on the electromagnetic waves' frequency, the value of SAR and temperature will be different for different tissues. For the purpose of this research, a realistic 3D model of a child's head has been created. Maximum absorption of electromagnetic energy occurs in the surface layers of the child head model, whereby this value exceeds the maximum allowed limits. This is the case when the radiation source is positioned closest to the head model. An increase in temperature was observed in the biological tissues and organs closest to the radiation source, i.e. the mobile phone. As the distance between the mobile phone and the child head increases, the temperature decreases, but slower than the SAR values.
ISSN:1330-3651
1848-6339