Network Anomaly Detection by Using a Time-Decay Closed Frequent Pattern
Anomaly detection of network traffic flows is a non-trivial problem in the field of network security due to the complexity of network traffic. However, most machine learning-based detection methods focus on network anomaly detection but ignore the user anomaly behavior detection. In real scenarios,...
主要な著者: | Ying Zhao, Junjun Chen, Di Wu, Jian Teng, Nabin Sharma, Atul Sajjanhar, Michael Blumenstein |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI AG
2019-08-01
|
シリーズ: | Information |
主題: | |
オンライン・アクセス: | https://www.mdpi.com/2078-2489/10/8/262 |
類似資料
-
An Optimization of Closed Frequent Subgraph Mining Algorithm
著者:: Demetrovics J., 等
出版事項: (2017-03-01) -
Efficient Mining of Non-Redundant Periodic Frequent Patterns
著者:: Michael Kofi Afriyie, 等
出版事項: (2021-11-01) -
Towards fast and memory efficient discovery of periodic frequent patterns
著者:: Vincent Mwintieru Nofong, 等
出版事項: (2019-10-01) -
TKIFRPM: A Novel Approach for Topmost-K Identical Frequent Regular Patterns Mining from Incremental Datasets
著者:: Saif Ur Rehman, 等
出版事項: (2023-01-01) -
Effectiveness of Comprehensive Geriatric Assessment-Based Intervention to Reduce Frequent Emergency Department Visits: A Report of Four Cases
著者:: Mei-Chen Liao, 等
出版事項: (2012-06-01)