Effect of 9,12-Octadecadiynoic Acid on Neurobehavioral Development in <i>Caenorhabditis elegans</i>

Human breast milk lipids have major beneficial effects: they promote infant early brain development, growth and health. To identify the relationship between human breast milk lipids and infant neurodevelopment, multivariate analyses that combined lipidomics and psychological Bayley-III scales evalua...

Full description

Bibliographic Details
Main Authors: Tun-Chieh Chen, How-Ran Chao, Ching-Ying Wu, Yun-Ru Lai, Chu-Huang Chen, Tohru Yoshioka, Wen-Li Hsu, Ming-Hsien Tsai
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/16/8917
Description
Summary:Human breast milk lipids have major beneficial effects: they promote infant early brain development, growth and health. To identify the relationship between human breast milk lipids and infant neurodevelopment, multivariate analyses that combined lipidomics and psychological Bayley-III scales evaluation were utilized. We identified that 9,12-octadecadiynoic acid has a significantly positive correlation with infant adaptive behavioral development, which is a crucial neurodevelopment to manage risk from environmental stress. To further clarify the biological function of 9,12-octadecadiynoic acid in regulating neurodevelopment, <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) was used as a model to investigate the effect of 9,12-octadecadiynoic acid on neurobehavioral development. Supplementation with 9,12-octadecadiynoic acid from the L1 to L4 stage in larvae affected locomotive behaviors and foraging ability that were not socially interactive, implying that 9,12-octadecadiynoic acid is involved in regulating the serotonergic neuronal ability. We found that supplementary 0.1 μM 9,12-octadecadiynoic acid accelerated the locomotive ability and foraging ability via increasing the expression of serotonin transporter <i>mod-1.</i> Antioxidant defense genes, <i>sod-1</i>, <i>sod-3</i> and <i>cyp-35A2</i> are involved in 9,12-octadecadiynoic acid-induced motor neuronal activity. Nevertheless, supplementary 9,12-octadecadiynoic acid at concentrations above 1 μM significantly attenuated locomotive behaviors, foraging ability, serotonin synthesis, serotonin-related gene expressions and stress-related gene expression, resulting in the decreased longevity of worms in the experiment. In conclusion, our study demonstrates the biological function of 9,12-octadecadiynoic acid in governing adaptive behavioral development.
ISSN:1661-6596
1422-0067