Summary: | Chłodzenie jest niezbędne dla właściwego funkcjonowania i niezawodności różnorodnych produktów, jak urządzenia elektroniczne, komputery, samochody, systemy laserowe wielkiej mocy, itp. W sytuacji wzrostu obciążenia cieplnego i strumieni ciepła wytwarzanych przez urządzenia przemysłowe, chłodzenie jest jednym z najważniejszych wyzwań występujących w różnych gałęziach przemysłu, transporcie, mikroelektronice, itp. Płynami, które zwykle są używane do odprowadzania ciepła z tych urządzeń są woda, glikol etylenowy i oleje. Nanopłyny, opracowane w ostatnim czasie, wykazują generalnie lepsze charakterystyki przewodnictwa cieplnego niż woda. Przedstawiona praca stanowi podsumowanie badań doświadczalnych nad wymuszonym, konwekcyjnym odprowadzaniem ciepła i charakterystykami przepływu nanopłynu składającego się z wody i cząsteczek Al2O3 (w 1% stężeniu objętościowym) w warunkach laminarnego przepływu współprądowego i przeciwprądowego w płaszczowych i rurowych wymiennikach ciepła. W przedstawionych badaniach użyto cząstek Al2O3 o średnicy ok. 50 nm. Wybrano trzy różne prędkości przepływu masy, opisano wyniki eksperymentów. Wyniki te wskazują, że całkowity współczynnik odprowadzania ciepła i bezwymiarowa liczba Nusselta nanopłynu są, przy tej samej prędkości przepływu masy i temperaturze na wlocie, nieznacznie wyższe, niż dla samego płynu bazowego. Z wyników doświadczalnych wynika, że całkowity współczynnik odprowadzania ciepła wzrasta wraz z prędkością przepływu masy. Pokazano, że gdy wzrasta prędkość przepływu masy, całkowity współczynnik odprowadzania ciepła wraz z bezwymiarową liczbą Nusselta ostatecznie wzrastają, niezależnie od kierunku przepływu. Stwierdzono także, że ze wzrostem prędkości przepływu masy wartość LMTD (średniej logarytmicznej różnicy temperatur) ostatecznie maleje, niezależnie od kierunku przepływu.
|