High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode

Abstract High-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode mater...

Full description

Bibliographic Details
Main Authors: Qiulong Wei, Qidong Li, Yalong Jiang, Yunlong Zhao, Shuangshuang Tan, Jun Dong, Liqiang Mai, Dong-Liang Peng
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:Nano-Micro Letters
Subjects:
Online Access:https://doi.org/10.1007/s40820-020-00567-2
_version_ 1818675243904925696
author Qiulong Wei
Qidong Li
Yalong Jiang
Yunlong Zhao
Shuangshuang Tan
Jun Dong
Liqiang Mai
Dong-Liang Peng
author_facet Qiulong Wei
Qidong Li
Yalong Jiang
Yunlong Zhao
Shuangshuang Tan
Jun Dong
Liqiang Mai
Dong-Liang Peng
author_sort Qiulong Wei
collection DOAJ
description Abstract High-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g−1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor–battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg−1 at 91 W kg−1, a high power density of 7.6 kW kg−1 with an energy density of 43 Wh kg−1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.
first_indexed 2024-12-17T08:24:29Z
format Article
id doaj.art-6782b29772ed4a05b01f3796ccbef910
institution Directory Open Access Journal
issn 2311-6706
2150-5551
language English
last_indexed 2024-12-17T08:24:29Z
publishDate 2021-01-01
publisher SpringerOpen
record_format Article
series Nano-Micro Letters
spelling doaj.art-6782b29772ed4a05b01f3796ccbef9102022-12-21T21:56:49ZengSpringerOpenNano-Micro Letters2311-67062150-55512021-01-0113111310.1007/s40820-020-00567-2High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance AnodeQiulong Wei0Qidong Li1Yalong Jiang2Yunlong Zhao3Shuangshuang Tan4Jun Dong5Liqiang Mai6Dong-Liang Peng7Department of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen UniversityShenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyAdvanced Technology Institute, University of SurreyState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyDepartment of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen UniversityAbstract High-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g−1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor–battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg−1 at 91 W kg−1, a high power density of 7.6 kW kg−1 with an energy density of 43 Wh kg−1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.https://doi.org/10.1007/s40820-020-00567-2Sodium-ion capacitorsPseudocapacitanceHybrid capacitorsTwo-dimensional materialsIron vanadate
spellingShingle Qiulong Wei
Qidong Li
Yalong Jiang
Yunlong Zhao
Shuangshuang Tan
Jun Dong
Liqiang Mai
Dong-Liang Peng
High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode
Nano-Micro Letters
Sodium-ion capacitors
Pseudocapacitance
Hybrid capacitors
Two-dimensional materials
Iron vanadate
title High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode
title_full High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode
title_fullStr High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode
title_full_unstemmed High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode
title_short High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode
title_sort high energy and high power pseudocapacitor battery hybrid sodium ion capacitor with na intercalation pseudocapacitance anode
topic Sodium-ion capacitors
Pseudocapacitance
Hybrid capacitors
Two-dimensional materials
Iron vanadate
url https://doi.org/10.1007/s40820-020-00567-2
work_keys_str_mv AT qiulongwei highenergyandhighpowerpseudocapacitorbatteryhybridsodiumioncapacitorwithnaintercalationpseudocapacitanceanode
AT qidongli highenergyandhighpowerpseudocapacitorbatteryhybridsodiumioncapacitorwithnaintercalationpseudocapacitanceanode
AT yalongjiang highenergyandhighpowerpseudocapacitorbatteryhybridsodiumioncapacitorwithnaintercalationpseudocapacitanceanode
AT yunlongzhao highenergyandhighpowerpseudocapacitorbatteryhybridsodiumioncapacitorwithnaintercalationpseudocapacitanceanode
AT shuangshuangtan highenergyandhighpowerpseudocapacitorbatteryhybridsodiumioncapacitorwithnaintercalationpseudocapacitanceanode
AT jundong highenergyandhighpowerpseudocapacitorbatteryhybridsodiumioncapacitorwithnaintercalationpseudocapacitanceanode
AT liqiangmai highenergyandhighpowerpseudocapacitorbatteryhybridsodiumioncapacitorwithnaintercalationpseudocapacitanceanode
AT dongliangpeng highenergyandhighpowerpseudocapacitorbatteryhybridsodiumioncapacitorwithnaintercalationpseudocapacitanceanode