An efficient numerical approach for space fractional partial differential equations

In this research work, authors are aiming to present a computational model based on hybrid B-spline collocation method (HBCM) to solve Space Fractional Partial Differential Equation (SFPDE). The efficiency of the proposed method is shown by two test problems for various values of T. Tables and graph...

Full description

Bibliographic Details
Main Authors: Rabia Shikrani, M.S. Hashmi, Nargis Khan, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Jagdev Singh, Devendra Kumar
Format: Article
Language:English
Published: Elsevier 2020-10-01
Series:Alexandria Engineering Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1110016820301307
_version_ 1818657546330701824
author Rabia Shikrani
M.S. Hashmi
Nargis Khan
Abdul Ghaffar
Kottakkaran Sooppy Nisar
Jagdev Singh
Devendra Kumar
author_facet Rabia Shikrani
M.S. Hashmi
Nargis Khan
Abdul Ghaffar
Kottakkaran Sooppy Nisar
Jagdev Singh
Devendra Kumar
author_sort Rabia Shikrani
collection DOAJ
description In this research work, authors are aiming to present a computational model based on hybrid B-spline collocation method (HBCM) to solve Space Fractional Partial Differential Equation (SFPDE). The efficiency of the proposed method is shown by two test problems for various values of T. Tables and graphs are used to describe the results, which ensures that results are in an excellent agreement with analytical solution.
first_indexed 2024-12-17T03:43:12Z
format Article
id doaj.art-678c0e126c1b4d5d9392aa8acc148f55
institution Directory Open Access Journal
issn 1110-0168
language English
last_indexed 2024-12-17T03:43:12Z
publishDate 2020-10-01
publisher Elsevier
record_format Article
series Alexandria Engineering Journal
spelling doaj.art-678c0e126c1b4d5d9392aa8acc148f552022-12-21T22:04:57ZengElsevierAlexandria Engineering Journal1110-01682020-10-0159529112919An efficient numerical approach for space fractional partial differential equationsRabia Shikrani0M.S. Hashmi1Nargis Khan2Abdul Ghaffar3Kottakkaran Sooppy Nisar4Jagdev Singh5Devendra Kumar6Department of Mathematics, The Govt. Sadiq College Women University, Bahawalpur, PakistanDepartment of Mathematics, The Govt. Sadiq College Women University, Bahawalpur, PakistanDepartment of Mathematics, The Islamia University of Bahawalpur, PakistanInformetrics Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Mathematics & Statistics, Ton Duc Thang University, Ho Chi Minh City, VietnamDepartment of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi ArabiaDepartment of Mathematics, JECRC University, Jaipur 303905, Rajasthan, India; Corresponding author.Department of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, IndiaIn this research work, authors are aiming to present a computational model based on hybrid B-spline collocation method (HBCM) to solve Space Fractional Partial Differential Equation (SFPDE). The efficiency of the proposed method is shown by two test problems for various values of T. Tables and graphs are used to describe the results, which ensures that results are in an excellent agreement with analytical solution.http://www.sciencedirect.com/science/article/pii/S111001682030130735R1141A15
spellingShingle Rabia Shikrani
M.S. Hashmi
Nargis Khan
Abdul Ghaffar
Kottakkaran Sooppy Nisar
Jagdev Singh
Devendra Kumar
An efficient numerical approach for space fractional partial differential equations
Alexandria Engineering Journal
35R11
41A15
title An efficient numerical approach for space fractional partial differential equations
title_full An efficient numerical approach for space fractional partial differential equations
title_fullStr An efficient numerical approach for space fractional partial differential equations
title_full_unstemmed An efficient numerical approach for space fractional partial differential equations
title_short An efficient numerical approach for space fractional partial differential equations
title_sort efficient numerical approach for space fractional partial differential equations
topic 35R11
41A15
url http://www.sciencedirect.com/science/article/pii/S1110016820301307
work_keys_str_mv AT rabiashikrani anefficientnumericalapproachforspacefractionalpartialdifferentialequations
AT mshashmi anefficientnumericalapproachforspacefractionalpartialdifferentialequations
AT nargiskhan anefficientnumericalapproachforspacefractionalpartialdifferentialequations
AT abdulghaffar anefficientnumericalapproachforspacefractionalpartialdifferentialequations
AT kottakkaransooppynisar anefficientnumericalapproachforspacefractionalpartialdifferentialequations
AT jagdevsingh anefficientnumericalapproachforspacefractionalpartialdifferentialequations
AT devendrakumar anefficientnumericalapproachforspacefractionalpartialdifferentialequations
AT rabiashikrani efficientnumericalapproachforspacefractionalpartialdifferentialequations
AT mshashmi efficientnumericalapproachforspacefractionalpartialdifferentialequations
AT nargiskhan efficientnumericalapproachforspacefractionalpartialdifferentialequations
AT abdulghaffar efficientnumericalapproachforspacefractionalpartialdifferentialequations
AT kottakkaransooppynisar efficientnumericalapproachforspacefractionalpartialdifferentialequations
AT jagdevsingh efficientnumericalapproachforspacefractionalpartialdifferentialequations
AT devendrakumar efficientnumericalapproachforspacefractionalpartialdifferentialequations