Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation

Graphene oxides with different degrees of oxidation are prepared by controlling UV irradiation on graphene, and the charge transport and the evolution of the transport gap are investigated according to the extent of oxidation. With increasing oxygenous defect density <inline-formula><math x...

Full description

Bibliographic Details
Main Authors: Hwa Yong Lee, Mohd Musaib Haidari, Eun Hee Kee, Jin Sik Choi, Bae Ho Park, Eleanor E. B. Campbell, Sung Ho Jhang
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/16/2845
_version_ 1797443016269496320
author Hwa Yong Lee
Mohd Musaib Haidari
Eun Hee Kee
Jin Sik Choi
Bae Ho Park
Eleanor E. B. Campbell
Sung Ho Jhang
author_facet Hwa Yong Lee
Mohd Musaib Haidari
Eun Hee Kee
Jin Sik Choi
Bae Ho Park
Eleanor E. B. Campbell
Sung Ho Jhang
author_sort Hwa Yong Lee
collection DOAJ
description Graphene oxides with different degrees of oxidation are prepared by controlling UV irradiation on graphene, and the charge transport and the evolution of the transport gap are investigated according to the extent of oxidation. With increasing oxygenous defect density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub></semantics></math></inline-formula>, a transition from ballistic to diffusive conduction occurs at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub><mo>≃</mo><msup><mn>10</mn><mn>12</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> and the transport gap grows in proportion to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub></msqrt></semantics></math></inline-formula>. Considering the potential fluctuation related to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mo>−</mo><mi>h</mi></mrow></semantics></math></inline-formula> puddle, the bandgap of graphene oxide is deduced to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi mathvariant="normal">g</mi></msub><mo>≃</mo><mn>30</mn><msqrt><mrow><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub><mspace width="3.33333pt"></mspace><mrow><mo>(</mo><msup><mn>10</mn><mn>12</mn></msup><mspace width="3.33333pt"></mspace><msup><mi>cm</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msqrt></mrow></semantics></math></inline-formula> meV. The temperature dependence of conductivity showed metal–insulator transitions at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub><mo>≃</mo><mn>0.3</mn><mo>×</mo><msup><mn>10</mn><mn>12</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, consistent with Ioffe–Regel criterion. For graphene oxides at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub><mo>≥</mo><mn>4.9</mn><mo>×</mo><msup><mn>10</mn><mn>12</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, analysis indicated charge transport occurred via 2D variable range hopping conduction between localized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><msup><mi>p</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> domain. Our work elucidates the transport mechanism at different extents of oxidation and supports the possibility of adjusting the bandgap with oxygen content.
first_indexed 2024-03-09T12:50:56Z
format Article
id doaj.art-679263900dbf46c2acd4dee6c2a07913
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-09T12:50:56Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-679263900dbf46c2acd4dee6c2a079132023-11-30T22:06:57ZengMDPI AGNanomaterials2079-49912022-08-011216284510.3390/nano12162845Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of OxidationHwa Yong Lee0Mohd Musaib Haidari1Eun Hee Kee2Jin Sik Choi3Bae Ho Park4Eleanor E. B. Campbell5Sung Ho Jhang6School of Physics, Konkuk University, Seoul 05029, KoreaSchool of Physics, Konkuk University, Seoul 05029, KoreaSchool of Physics, Konkuk University, Seoul 05029, KoreaSchool of Physics, Konkuk University, Seoul 05029, KoreaSchool of Physics, Konkuk University, Seoul 05029, KoreaEaStCHEM, School of Chemistry, Edinburgh University, David Brewster Road, Edinburgh EH9 3FJ, UKSchool of Physics, Konkuk University, Seoul 05029, KoreaGraphene oxides with different degrees of oxidation are prepared by controlling UV irradiation on graphene, and the charge transport and the evolution of the transport gap are investigated according to the extent of oxidation. With increasing oxygenous defect density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub></semantics></math></inline-formula>, a transition from ballistic to diffusive conduction occurs at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub><mo>≃</mo><msup><mn>10</mn><mn>12</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> and the transport gap grows in proportion to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub></msqrt></semantics></math></inline-formula>. Considering the potential fluctuation related to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mo>−</mo><mi>h</mi></mrow></semantics></math></inline-formula> puddle, the bandgap of graphene oxide is deduced to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi mathvariant="normal">g</mi></msub><mo>≃</mo><mn>30</mn><msqrt><mrow><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub><mspace width="3.33333pt"></mspace><mrow><mo>(</mo><msup><mn>10</mn><mn>12</mn></msup><mspace width="3.33333pt"></mspace><msup><mi>cm</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msqrt></mrow></semantics></math></inline-formula> meV. The temperature dependence of conductivity showed metal–insulator transitions at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub><mo>≃</mo><mn>0.3</mn><mo>×</mo><msup><mn>10</mn><mn>12</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, consistent with Ioffe–Regel criterion. For graphene oxides at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mi mathvariant="normal">D</mi></msub><mo>≥</mo><mn>4.9</mn><mo>×</mo><msup><mn>10</mn><mn>12</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, analysis indicated charge transport occurred via 2D variable range hopping conduction between localized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><msup><mi>p</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> domain. Our work elucidates the transport mechanism at different extents of oxidation and supports the possibility of adjusting the bandgap with oxygen content.https://www.mdpi.com/2079-4991/12/16/2845graphene oxidedefect densitytransport gapband gapmetal–insulator transition2D Mott VRH
spellingShingle Hwa Yong Lee
Mohd Musaib Haidari
Eun Hee Kee
Jin Sik Choi
Bae Ho Park
Eleanor E. B. Campbell
Sung Ho Jhang
Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation
Nanomaterials
graphene oxide
defect density
transport gap
band gap
metal–insulator transition
2D Mott VRH
title Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation
title_full Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation
title_fullStr Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation
title_full_unstemmed Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation
title_short Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation
title_sort charge transport in uv oxidized graphene and its dependence on the extent of oxidation
topic graphene oxide
defect density
transport gap
band gap
metal–insulator transition
2D Mott VRH
url https://www.mdpi.com/2079-4991/12/16/2845
work_keys_str_mv AT hwayonglee chargetransportinuvoxidizedgrapheneanditsdependenceontheextentofoxidation
AT mohdmusaibhaidari chargetransportinuvoxidizedgrapheneanditsdependenceontheextentofoxidation
AT eunheekee chargetransportinuvoxidizedgrapheneanditsdependenceontheextentofoxidation
AT jinsikchoi chargetransportinuvoxidizedgrapheneanditsdependenceontheextentofoxidation
AT baehopark chargetransportinuvoxidizedgrapheneanditsdependenceontheextentofoxidation
AT eleanorebcampbell chargetransportinuvoxidizedgrapheneanditsdependenceontheextentofoxidation
AT sunghojhang chargetransportinuvoxidizedgrapheneanditsdependenceontheextentofoxidation