Multivariate analysis using morphometric and ultrasound information for selection of tilapia (Oreochromis niloticus) breeders
ABSTRACT This study evaluated morphometric and ultrasound information of tilapia (O. niloticus) breeders through multivariate analysis. We applied correlation, clustering, and principal component analysis to a dataset composed of information from 222 male and female breeders of the improved GIFT str...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Zootecnia
2019-03-01
|
Series: | Revista Brasileira de Zootecnia |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982019000100151&lng=en&tlng=en |
_version_ | 1828789310475730944 |
---|---|
author | Sheila Nogueira de Oliveira Ricardo Pereira Ribeiro Carlos Antonio Lopes de Oliveira Nelson Mauricio Lopera-Barrero Rusbel Raul Aspilcueta Borquis Aline Mayra da Silva Oliveira Zardin Felipe Pinheiro de Souza Angela Rocio Poveda-Parra |
author_facet | Sheila Nogueira de Oliveira Ricardo Pereira Ribeiro Carlos Antonio Lopes de Oliveira Nelson Mauricio Lopera-Barrero Rusbel Raul Aspilcueta Borquis Aline Mayra da Silva Oliveira Zardin Felipe Pinheiro de Souza Angela Rocio Poveda-Parra |
author_sort | Sheila Nogueira de Oliveira |
collection | DOAJ |
description | ABSTRACT This study evaluated morphometric and ultrasound information of tilapia (O. niloticus) breeders through multivariate analysis. We applied correlation, clustering, and principal component analysis to a dataset composed of information from 222 male and female breeders of the improved GIFT strain. The body weight, objective of the breeding program, showed a high positive correlation with most of the morphometric parameters. The formation of clusters indicated characteristics responsible for muscle composition and carcass weight. Some characteristics showed a high correlation, such as body weight and fillet weight (0.98 and 0.94 for females and males, respectively), and a high contribution to the explanation of data variability; of the total characteristics evaluated for females, two explained 75% data variability and four explained 72% for males. We concluded that it is possible to reduce the number of characteristics measured, as well as use information of average daily weight gain and body weight to select female and male breeders, respectively, to drive genetic gains favoring more productive generations. |
first_indexed | 2024-12-12T01:10:09Z |
format | Article |
id | doaj.art-679b5570beda4b3bbffab4ebaf0aa2dd |
institution | Directory Open Access Journal |
issn | 1806-9290 |
language | English |
last_indexed | 2024-12-12T01:10:09Z |
publishDate | 2019-03-01 |
publisher | Sociedade Brasileira de Zootecnia |
record_format | Article |
series | Revista Brasileira de Zootecnia |
spelling | doaj.art-679b5570beda4b3bbffab4ebaf0aa2dd2022-12-22T00:43:30ZengSociedade Brasileira de ZootecniaRevista Brasileira de Zootecnia1806-92902019-03-0148010.1590/rbz4820170179S1516-35982019000100151Multivariate analysis using morphometric and ultrasound information for selection of tilapia (Oreochromis niloticus) breedersSheila Nogueira de OliveiraRicardo Pereira RibeiroCarlos Antonio Lopes de OliveiraNelson Mauricio Lopera-BarreroRusbel Raul Aspilcueta BorquisAline Mayra da Silva Oliveira ZardinFelipe Pinheiro de SouzaAngela Rocio Poveda-ParraABSTRACT This study evaluated morphometric and ultrasound information of tilapia (O. niloticus) breeders through multivariate analysis. We applied correlation, clustering, and principal component analysis to a dataset composed of information from 222 male and female breeders of the improved GIFT strain. The body weight, objective of the breeding program, showed a high positive correlation with most of the morphometric parameters. The formation of clusters indicated characteristics responsible for muscle composition and carcass weight. Some characteristics showed a high correlation, such as body weight and fillet weight (0.98 and 0.94 for females and males, respectively), and a high contribution to the explanation of data variability; of the total characteristics evaluated for females, two explained 75% data variability and four explained 72% for males. We concluded that it is possible to reduce the number of characteristics measured, as well as use information of average daily weight gain and body weight to select female and male breeders, respectively, to drive genetic gains favoring more productive generations.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982019000100151&lng=en&tlng=enaquaculturebreedingfish farmingOreochromis sp.phenotypic selection |
spellingShingle | Sheila Nogueira de Oliveira Ricardo Pereira Ribeiro Carlos Antonio Lopes de Oliveira Nelson Mauricio Lopera-Barrero Rusbel Raul Aspilcueta Borquis Aline Mayra da Silva Oliveira Zardin Felipe Pinheiro de Souza Angela Rocio Poveda-Parra Multivariate analysis using morphometric and ultrasound information for selection of tilapia (Oreochromis niloticus) breeders Revista Brasileira de Zootecnia aquaculture breeding fish farming Oreochromis sp. phenotypic selection |
title | Multivariate analysis using morphometric and ultrasound information for selection of tilapia (Oreochromis niloticus) breeders |
title_full | Multivariate analysis using morphometric and ultrasound information for selection of tilapia (Oreochromis niloticus) breeders |
title_fullStr | Multivariate analysis using morphometric and ultrasound information for selection of tilapia (Oreochromis niloticus) breeders |
title_full_unstemmed | Multivariate analysis using morphometric and ultrasound information for selection of tilapia (Oreochromis niloticus) breeders |
title_short | Multivariate analysis using morphometric and ultrasound information for selection of tilapia (Oreochromis niloticus) breeders |
title_sort | multivariate analysis using morphometric and ultrasound information for selection of tilapia oreochromis niloticus breeders |
topic | aquaculture breeding fish farming Oreochromis sp. phenotypic selection |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982019000100151&lng=en&tlng=en |
work_keys_str_mv | AT sheilanogueiradeoliveira multivariateanalysisusingmorphometricandultrasoundinformationforselectionoftilapiaoreochromisniloticusbreeders AT ricardopereiraribeiro multivariateanalysisusingmorphometricandultrasoundinformationforselectionoftilapiaoreochromisniloticusbreeders AT carlosantoniolopesdeoliveira multivariateanalysisusingmorphometricandultrasoundinformationforselectionoftilapiaoreochromisniloticusbreeders AT nelsonmauricioloperabarrero multivariateanalysisusingmorphometricandultrasoundinformationforselectionoftilapiaoreochromisniloticusbreeders AT rusbelraulaspilcuetaborquis multivariateanalysisusingmorphometricandultrasoundinformationforselectionoftilapiaoreochromisniloticusbreeders AT alinemayradasilvaoliveirazardin multivariateanalysisusingmorphometricandultrasoundinformationforselectionoftilapiaoreochromisniloticusbreeders AT felipepinheirodesouza multivariateanalysisusingmorphometricandultrasoundinformationforselectionoftilapiaoreochromisniloticusbreeders AT angelarociopovedaparra multivariateanalysisusingmorphometricandultrasoundinformationforselectionoftilapiaoreochromisniloticusbreeders |