Summary: | <p>Abstract</p> <p>Background</p> <p>Rapid diagnostic tests (RDTs) for malaria are increasingly being considered for routine use in Africa. However, many RDTs are available and selecting the ideal test for a particular setting is challenging. The appropriateness of RDT choice depends in part on patient population and epidemiological setting, and on decision makers' priorities. The model presented (available online) can be used by decision makers to evaluate alternative RDTs and assess the circumstances under which their use is justified on economic grounds.</p> <p>Methods</p> <p>An interactive model based on a decision-tree structure and a cost-benefit framework was designed to compare different diagnostic strategies. Variables included in the model can be modified by users, including RDT and treatment costs, test accuracies (sensitivity and specificity), probabilities for developing severe illness, case-fatality rates, and clinician response to negative test results. To illustrate how the model can be used, a comparison is made of presumptive treatment with two available RDTs, one detecting histidine-rich protein-2 (HRP2) and one detecting Plasmodium lactate dehydrogenase (pLDH). Data inputs were obtained from a study comparing the RDTs at seven sites in Uganda.</p> <p>Results</p> <p>Applying the model in the illustrative Ugandan context demonstrates that if only direct expenditures are considered, the pLDH test is the preferred option for adult patients except in high transmission settings, while young children are best treated presumptively in all settings. When health outcomes are considered, the HRP2 test gains an advantage in almost all settings and for all age groups. Introducing possible adverse consequences of using an antimalarial into the analysis, such as adverse drug reactions, or the development of resistance, considerably strengthens the case for using RDTs. When the model is adjusted to account for less than complete adherence to test results, the efficiency of using RDTs drops sharply.</p> <p>Conclusion</p> <p>Model output demonstrates that which test is preferable varies by location, depending on factors such as malaria transmission intensity and the costs and accuracies of the RDTs under consideration. Despite the uncertainties and complexities involved, adaptable models such as the one presented here can serve as a practical tool to assist policy makers in efficient deployment of new technologies.</p>
|