Impacts of Gravitational Mass Movements on Protective Structures—Rock Avalanches/Granular Flow

Rock avalanches and landslides lead to gravitational flow into their runout areas, which poses increasing danger to settlement areas and infrastructure in the Alpine region as a result of climate change. In recent years, a significant increase in extreme events has been registered in the Alps due to...

Full description

Bibliographic Details
Main Authors: Robert Hofmann, Simon Berger
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Geosciences
Subjects:
Online Access:https://www.mdpi.com/2076-3263/12/6/223
Description
Summary:Rock avalanches and landslides lead to gravitational flow into their runout areas, which poses increasing danger to settlement areas and infrastructure in the Alpine region as a result of climate change. In recent years, a significant increase in extreme events has been registered in the Alps due to climate change. These changes in the threat to settlement areas in the Alpine region have resulted in the need for the construction of sustainable protective structures. Many structures are rigid, but others are now also increasingly flexible, e.g., net and dam structures, which are mainly earth dams with geogrids. In this study, empirical model experiments and numerical simulations were carried out to estimate the flow depth, the deposition forms and the effects on protective structures. Numerical programs usually require unknown input parameters and long computation times for a realistic simulation of the process. This study shows the results of model tests with different granular materials. Furthermore, different design approaches of different authors are presented. Finally, a design model based on the model tests of the University of Innsbruck for rigid barriers, nets and dams due to rock avalanches is presented.
ISSN:2076-3263