Summary: | An aggressive form of neuroblastoma (NB), a malignant childhood cancer derived from granule neuron precursors and sympathoadrenal lineage, frequently comprises <i>MYCN</i> amplification/elevated N-Myc expression, which contributes to the development of neural crest-derived embryonal malignancy. N-Myc is an oncogenic driver in NB. Persistent N-Myc expression during the maturation of SA precursor cells can cause blockage of the apoptosis and induce abnormal proliferation, resulting in NB development. An insulinoma-associated-1 (INSM1) zinc-finger transcription factor has emerged as an NB biomarker that plays a critical role in facilitating tumor cell growth and transformation. INSM1 plays an essential role in sympathoadrenal cell differentiation. N-Myc activates endogenous INSM1 through an <i>E2-box</i> of the <i>INSM1</i> proximal promoter, whereas INSM1 enhances N-Myc stability via RAC-α-serine/threonine protein kinase (AKT) phosphorylation in NB. The ectopic expression of INSM1 stimulates NB tumor growth in contrast to the knockdown of INSM1 that inhibits NB cell proliferation. The clinical pathological result and bioinformatics analysis show that INSM1 is a strong diagnostic and a prognostic biomarker for the evaluation of NB progression. The INSM1/N-Myc expression shows high clinical relevance in NB. Therefore, targeting the INSM1/N-Myc-associated signaling axis should be a feasible approach to identifying new drugs for the suppression of NB tumor growth.
|