Electron-Driven Instabilities in the Solar Wind

The electrons are an essential particle species in the solar wind. They often exhibit non-equilibrium features in their velocity distribution function. These include temperature anisotropies, tails (kurtosis), and reflectional asymmetries (skewness), which contribute a significant heat flux to the s...

Full description

Bibliographic Details
Main Authors: Daniel Verscharen, B. D. G. Chandran, E. Boella, J. Halekas, M. E. Innocenti, V. K. Jagarlamudi, A. Micera, V. Pierrard, Š. Štverák, I. Y. Vasko, M. Velli, P. L. Whittlesey
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-08-01
Series:Frontiers in Astronomy and Space Sciences
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fspas.2022.951628/full
_version_ 1811343413614739456
author Daniel Verscharen
B. D. G. Chandran
B. D. G. Chandran
E. Boella
E. Boella
J. Halekas
M. E. Innocenti
V. K. Jagarlamudi
V. K. Jagarlamudi
A. Micera
V. Pierrard
V. Pierrard
Š. Štverák
Š. Štverák
I. Y. Vasko
I. Y. Vasko
M. Velli
P. L. Whittlesey
author_facet Daniel Verscharen
B. D. G. Chandran
B. D. G. Chandran
E. Boella
E. Boella
J. Halekas
M. E. Innocenti
V. K. Jagarlamudi
V. K. Jagarlamudi
A. Micera
V. Pierrard
V. Pierrard
Š. Štverák
Š. Štverák
I. Y. Vasko
I. Y. Vasko
M. Velli
P. L. Whittlesey
author_sort Daniel Verscharen
collection DOAJ
description The electrons are an essential particle species in the solar wind. They often exhibit non-equilibrium features in their velocity distribution function. These include temperature anisotropies, tails (kurtosis), and reflectional asymmetries (skewness), which contribute a significant heat flux to the solar wind. If these non-equilibrium features are sufficiently strong, they drive kinetic micro-instabilities. We develop a semi-graphical framework based on the equations of quasi-linear theory to describe electron-driven instabilities in the solar wind. We apply our framework to resonant instabilities driven by temperature anisotropies. These include the electron whistler anisotropy instability and the propagating electron firehose instability. We then describe resonant instabilities driven by reflectional asymmetries in the electron distribution function. These include the electron/ion-acoustic, kinetic Alfvén heat-flux, Langmuir, electron-beam, electron/ion-cyclotron, electron/electron-acoustic, whistler heat-flux, oblique fast-magnetosonic/whistler, lower-hybrid fan, and electron-deficit whistler instability. We briefly comment on non-resonant instabilities driven by electron temperature anisotropies such as the mirror-mode and the non-propagating firehose instability. We conclude our review with a list of open research topics in the field of electron-driven instabilities in the solar wind.
first_indexed 2024-04-13T19:29:00Z
format Article
id doaj.art-67e5f15b2d1f4515923a19390328ae73
institution Directory Open Access Journal
issn 2296-987X
language English
last_indexed 2024-04-13T19:29:00Z
publishDate 2022-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Astronomy and Space Sciences
spelling doaj.art-67e5f15b2d1f4515923a19390328ae732022-12-22T02:33:15ZengFrontiers Media S.A.Frontiers in Astronomy and Space Sciences2296-987X2022-08-01910.3389/fspas.2022.951628951628Electron-Driven Instabilities in the Solar WindDaniel Verscharen0B. D. G. Chandran1B. D. G. Chandran2E. Boella3E. Boella4J. Halekas5M. E. Innocenti6V. K. Jagarlamudi7V. K. Jagarlamudi8A. Micera9V. Pierrard10V. Pierrard11Š. Štverák12Š. Štverák13I. Y. Vasko14I. Y. Vasko15M. Velli16P. L. Whittlesey17Mullard Space Science Laboratory, University College London, Dorking, United KingdomSpace Science Center, University of New Hampshire, Durham, NH, United StatesDepartment of Physics and Astronomy, University of New Hampshire, Durham, NH, United StatesPhysics Department, Lancaster University, Lancaster, United KingdomCockroft Institute, Daresbury Laboratory, Warrington, United KingdomDepartment of Physics and Astronomy, University of Iowa, Iowa, IA, United StatesInstitut für Theoretische Physik, Ruhr-Universität Bochum, Bochum, GermanyApplied Physics Laboratory, Johns Hopkins University, Laurel, MD, United StatesNational Institute for Astrophysics—Institute for Space Astrophysics and Planetology, Rome, Italy0Solar-Terrestrial Centre of Excellence, Royal Observatory of Belgium, Brussels, Belgium0Solar-Terrestrial Centre of Excellence, Royal Observatory of Belgium, Brussels, Belgium1Center for Space Radiations (CSR) and Georges Lemaître Centre for Earth and Climate Research (TECLIM), Earth and Life Institute (ELI), Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium2Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic3Astronomical Institute of the Czech Academy of Sciences, Prague, Czech Republic4Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, United States5Space Research Institute, Russian Academy of Sciences, Moscow, Russia6Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States4Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, United StatesThe electrons are an essential particle species in the solar wind. They often exhibit non-equilibrium features in their velocity distribution function. These include temperature anisotropies, tails (kurtosis), and reflectional asymmetries (skewness), which contribute a significant heat flux to the solar wind. If these non-equilibrium features are sufficiently strong, they drive kinetic micro-instabilities. We develop a semi-graphical framework based on the equations of quasi-linear theory to describe electron-driven instabilities in the solar wind. We apply our framework to resonant instabilities driven by temperature anisotropies. These include the electron whistler anisotropy instability and the propagating electron firehose instability. We then describe resonant instabilities driven by reflectional asymmetries in the electron distribution function. These include the electron/ion-acoustic, kinetic Alfvén heat-flux, Langmuir, electron-beam, electron/ion-cyclotron, electron/electron-acoustic, whistler heat-flux, oblique fast-magnetosonic/whistler, lower-hybrid fan, and electron-deficit whistler instability. We briefly comment on non-resonant instabilities driven by electron temperature anisotropies such as the mirror-mode and the non-propagating firehose instability. We conclude our review with a list of open research topics in the field of electron-driven instabilities in the solar wind.https://www.frontiersin.org/articles/10.3389/fspas.2022.951628/fullsolar windplasmainstabilitieselectronstemperature anisotropyheat flux
spellingShingle Daniel Verscharen
B. D. G. Chandran
B. D. G. Chandran
E. Boella
E. Boella
J. Halekas
M. E. Innocenti
V. K. Jagarlamudi
V. K. Jagarlamudi
A. Micera
V. Pierrard
V. Pierrard
Š. Štverák
Š. Štverák
I. Y. Vasko
I. Y. Vasko
M. Velli
P. L. Whittlesey
Electron-Driven Instabilities in the Solar Wind
Frontiers in Astronomy and Space Sciences
solar wind
plasma
instabilities
electrons
temperature anisotropy
heat flux
title Electron-Driven Instabilities in the Solar Wind
title_full Electron-Driven Instabilities in the Solar Wind
title_fullStr Electron-Driven Instabilities in the Solar Wind
title_full_unstemmed Electron-Driven Instabilities in the Solar Wind
title_short Electron-Driven Instabilities in the Solar Wind
title_sort electron driven instabilities in the solar wind
topic solar wind
plasma
instabilities
electrons
temperature anisotropy
heat flux
url https://www.frontiersin.org/articles/10.3389/fspas.2022.951628/full
work_keys_str_mv AT danielverscharen electrondriveninstabilitiesinthesolarwind
AT bdgchandran electrondriveninstabilitiesinthesolarwind
AT bdgchandran electrondriveninstabilitiesinthesolarwind
AT eboella electrondriveninstabilitiesinthesolarwind
AT eboella electrondriveninstabilitiesinthesolarwind
AT jhalekas electrondriveninstabilitiesinthesolarwind
AT meinnocenti electrondriveninstabilitiesinthesolarwind
AT vkjagarlamudi electrondriveninstabilitiesinthesolarwind
AT vkjagarlamudi electrondriveninstabilitiesinthesolarwind
AT amicera electrondriveninstabilitiesinthesolarwind
AT vpierrard electrondriveninstabilitiesinthesolarwind
AT vpierrard electrondriveninstabilitiesinthesolarwind
AT sstverak electrondriveninstabilitiesinthesolarwind
AT sstverak electrondriveninstabilitiesinthesolarwind
AT iyvasko electrondriveninstabilitiesinthesolarwind
AT iyvasko electrondriveninstabilitiesinthesolarwind
AT mvelli electrondriveninstabilitiesinthesolarwind
AT plwhittlesey electrondriveninstabilitiesinthesolarwind