Summary: | Abstract Myxoid glioneuronal tumors (MGNT) are low-grade glioneuronal neoplasms composed of oligodendrocyte-like cells in a mucin-rich stroma. These tumors feature a unique dinucleotide change at codon 385 in the platelet-derived growth factor receptor α (encoded by the PDGFRA gene), resulting in the substitution of lysine 385 into leucine or isoleucine. The functional consequences of these mutations remain largely unexplored. Here, we demonstrated their oncogenic potential in fibroblast and Ba/F3 transformation assays. We showed that the K385I and K385L mutants activate STAT and AKT signaling in the absence of ligand. Co-immunoprecipitations and BRET experiments suggested that the mutations stabilized the active dimeric conformation of the receptor, pointing to a new mechanism of oncogenic PDGF receptor activation. Furthermore, we evaluated the sensitivity of these mutants to three FDA-approved tyrosine kinase inhibitors: imatinib, dasatinib, and avapritinib, which effectively suppressed the constitutive activity of the mutant receptors. Finally, K385 substitution into another hydrophobic amino acid also activated the receptor. Interestingly, K385M was reported in a few cases of brain tumors but not in MGNT. Our results provide valuable insights into the molecular mechanism underlying the activation of PDGFRα by the K385I/L mutations, highlighting their potential as actionable targets in the treatment of myxoid glioneuronal tumors.
|