Asymptotic behavior of a stochastic HIV model with Beddington–DeAngelis functional response
Abstract In this paper, we study the dynamics property of a stochastic HIV model with Beddington–DeAngelis functional response. It has a unique uninfected steady state. We prove that the model has a unique global positive solution. Furthermore, if the basic reproductive number is not larger than 1,...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-09-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-020-02911-7 |
Summary: | Abstract In this paper, we study the dynamics property of a stochastic HIV model with Beddington–DeAngelis functional response. It has a unique uninfected steady state. We prove that the model has a unique global positive solution. Furthermore, if the basic reproductive number is not larger than 1, the asymptotic behavior of the solution is stochastically stable. Otherwise, it fluctuates randomly around the infected steady state of the corresponding deterministic HIV model. Finally, some numerical simulations are carried out to verify our results. |
---|---|
ISSN: | 1687-1847 |