Classification of Breast Cancer in Mammograms with Deep Learning Adding a Fifth Class

Breast cancer is one of the diseases of most profound concern, with the most prevalence worldwide, where early detections and diagnoses play the leading role against this disease achieved through imaging techniques such as mammography. Radiologists tend to have a high false positive rate for mammogr...

Full description

Bibliographic Details
Main Authors: Salvador Castro-Tapia, Celina Lizeth Castañeda-Miranda, Carlos Alberto Olvera-Olvera, Héctor A. Guerrero-Osuna, José Manuel Ortiz-Rodriguez, Ma. del Rosario Martínez-Blanco, Germán Díaz-Florez, Jorge Domingo Mendiola-Santibañez, Luis Octavio Solís-Sánchez
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/23/11398
_version_ 1827675086140735488
author Salvador Castro-Tapia
Celina Lizeth Castañeda-Miranda
Carlos Alberto Olvera-Olvera
Héctor A. Guerrero-Osuna
José Manuel Ortiz-Rodriguez
Ma. del Rosario Martínez-Blanco
Germán Díaz-Florez
Jorge Domingo Mendiola-Santibañez
Luis Octavio Solís-Sánchez
author_facet Salvador Castro-Tapia
Celina Lizeth Castañeda-Miranda
Carlos Alberto Olvera-Olvera
Héctor A. Guerrero-Osuna
José Manuel Ortiz-Rodriguez
Ma. del Rosario Martínez-Blanco
Germán Díaz-Florez
Jorge Domingo Mendiola-Santibañez
Luis Octavio Solís-Sánchez
author_sort Salvador Castro-Tapia
collection DOAJ
description Breast cancer is one of the diseases of most profound concern, with the most prevalence worldwide, where early detections and diagnoses play the leading role against this disease achieved through imaging techniques such as mammography. Radiologists tend to have a high false positive rate for mammography diagnoses and an accuracy of around 82%. Currently, deep learning (DL) techniques have shown promising results in the early detection of breast cancer by generating computer-aided diagnosis (CAD) systems implementing convolutional neural networks (CNNs). This work focuses on applying, evaluating, and comparing the architectures: AlexNet, GoogLeNet, Resnet50, and Vgg19 to classify breast lesions after using transfer learning with fine-tuning and training the CNN with regions extracted from the MIAS and INbreast databases. We analyzed 14 classifiers, involving 4 classes as several researches have done it before, corresponding to benign and malignant microcalcifications and masses, and as our main contribution, we also added a 5th class for the normal tissue of the mammary parenchyma increasing the correct detection; in order to evaluate the architectures with a statistical analysis based on the received operational characteristics (ROC), the area under the curve (AUC), F1 Score, accuracy, precision, sensitivity, and specificity. We generate the best results with the CNN GoogLeNet trained with five classes on a balanced database with an AUC of 99.29%, F1 Score of 91.92%, the accuracy of 91.92%, precision of 92.15%, sensitivity of 91.70%, and specificity of 97.66%, concluding that GoogLeNet is optimal as a classifier in a CAD system to deal with breast cancer.
first_indexed 2024-03-10T04:57:13Z
format Article
id doaj.art-681be7432c424ef983dd5bb4607c5fa6
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T04:57:13Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-681be7432c424ef983dd5bb4607c5fa62023-11-23T02:07:32ZengMDPI AGApplied Sciences2076-34172021-12-0111231139810.3390/app112311398Classification of Breast Cancer in Mammograms with Deep Learning Adding a Fifth ClassSalvador Castro-Tapia0Celina Lizeth Castañeda-Miranda1Carlos Alberto Olvera-Olvera2Héctor A. Guerrero-Osuna3José Manuel Ortiz-Rodriguez4Ma. del Rosario Martínez-Blanco5Germán Díaz-Florez6Jorge Domingo Mendiola-Santibañez7Luis Octavio Solís-Sánchez8Laboratorio de Sistemas Inteligentes de Visión Artificial, Posgrado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, 801 Ramón López Velarde Avenue, Centro, Zacatecas 98000, MexicoLaboratorio de Sistemas Inteligentes de Visión Artificial, Posgrado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, 801 Ramón López Velarde Avenue, Centro, Zacatecas 98000, MexicoPosgrado en Ciencias de Ingeniería, Universidad Autónoma de Zacatecas, Km. 6 La Escondida, Zacatecas 98160, MexicoLaboratorio de Sistemas Inteligentes de Visión Artificial, Posgrado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, 801 Ramón López Velarde Avenue, Centro, Zacatecas 98000, MexicoLaboratorio de Sistemas Inteligentes de Visión Artificial, Posgrado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, 801 Ramón López Velarde Avenue, Centro, Zacatecas 98000, MexicoLaboratorio de Sistemas Inteligentes de Visión Artificial, Posgrado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, 801 Ramón López Velarde Avenue, Centro, Zacatecas 98000, MexicoLaboratorio de Sistemas Inteligentes de Visión Artificial, Posgrado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, 801 Ramón López Velarde Avenue, Centro, Zacatecas 98000, MexicoFacultad de Ingeniería UAQ, Cerro de las Campanas, Santiago de Querétaro 76010, MexicoLaboratorio de Sistemas Inteligentes de Visión Artificial, Posgrado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, 801 Ramón López Velarde Avenue, Centro, Zacatecas 98000, MexicoBreast cancer is one of the diseases of most profound concern, with the most prevalence worldwide, where early detections and diagnoses play the leading role against this disease achieved through imaging techniques such as mammography. Radiologists tend to have a high false positive rate for mammography diagnoses and an accuracy of around 82%. Currently, deep learning (DL) techniques have shown promising results in the early detection of breast cancer by generating computer-aided diagnosis (CAD) systems implementing convolutional neural networks (CNNs). This work focuses on applying, evaluating, and comparing the architectures: AlexNet, GoogLeNet, Resnet50, and Vgg19 to classify breast lesions after using transfer learning with fine-tuning and training the CNN with regions extracted from the MIAS and INbreast databases. We analyzed 14 classifiers, involving 4 classes as several researches have done it before, corresponding to benign and malignant microcalcifications and masses, and as our main contribution, we also added a 5th class for the normal tissue of the mammary parenchyma increasing the correct detection; in order to evaluate the architectures with a statistical analysis based on the received operational characteristics (ROC), the area under the curve (AUC), F1 Score, accuracy, precision, sensitivity, and specificity. We generate the best results with the CNN GoogLeNet trained with five classes on a balanced database with an AUC of 99.29%, F1 Score of 91.92%, the accuracy of 91.92%, precision of 92.15%, sensitivity of 91.70%, and specificity of 97.66%, concluding that GoogLeNet is optimal as a classifier in a CAD system to deal with breast cancer.https://www.mdpi.com/2076-3417/11/23/11398breast cancerearly detectiondeep learning (DL)convolutional neural networks (CNN)classificationmasses
spellingShingle Salvador Castro-Tapia
Celina Lizeth Castañeda-Miranda
Carlos Alberto Olvera-Olvera
Héctor A. Guerrero-Osuna
José Manuel Ortiz-Rodriguez
Ma. del Rosario Martínez-Blanco
Germán Díaz-Florez
Jorge Domingo Mendiola-Santibañez
Luis Octavio Solís-Sánchez
Classification of Breast Cancer in Mammograms with Deep Learning Adding a Fifth Class
Applied Sciences
breast cancer
early detection
deep learning (DL)
convolutional neural networks (CNN)
classification
masses
title Classification of Breast Cancer in Mammograms with Deep Learning Adding a Fifth Class
title_full Classification of Breast Cancer in Mammograms with Deep Learning Adding a Fifth Class
title_fullStr Classification of Breast Cancer in Mammograms with Deep Learning Adding a Fifth Class
title_full_unstemmed Classification of Breast Cancer in Mammograms with Deep Learning Adding a Fifth Class
title_short Classification of Breast Cancer in Mammograms with Deep Learning Adding a Fifth Class
title_sort classification of breast cancer in mammograms with deep learning adding a fifth class
topic breast cancer
early detection
deep learning (DL)
convolutional neural networks (CNN)
classification
masses
url https://www.mdpi.com/2076-3417/11/23/11398
work_keys_str_mv AT salvadorcastrotapia classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass
AT celinalizethcastanedamiranda classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass
AT carlosalbertoolveraolvera classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass
AT hectoraguerreroosuna classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass
AT josemanuelortizrodriguez classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass
AT madelrosariomartinezblanco classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass
AT germandiazflorez classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass
AT jorgedomingomendiolasantibanez classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass
AT luisoctaviosolissanchez classificationofbreastcancerinmammogramswithdeeplearningaddingafifthclass