Sodium‐Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium‐Ion and Sodium–Oxygen Batteries

Excellent, self‐improving sodiation rate capabilities in combination with high capacity retention upon galvanostatic charge/discharge cycling are found for oxygen‐deficient, carburized, and self‐organized titanium dioxide (TiO2−x) nanotubes (NTs). The sodiation mechanism is attributed to the formati...

Full description

Bibliographic Details
Main Authors: Lukas Szabados, Daniel Winkler, David Stock, Thöny Alexander, Thomas Lörting, Julia Kunze-Liebhäuser, Engelbert Portenkirchner
Format: Article
Language:English
Published: Wiley-VCH 2022-12-01
Series:Advanced Energy & Sustainability Research
Subjects:
Online Access:https://doi.org/10.1002/aesr.202200104
_version_ 1811186332770238464
author Lukas Szabados
Daniel Winkler
David Stock
Thöny Alexander
Thomas Lörting
Julia Kunze-Liebhäuser
Engelbert Portenkirchner
author_facet Lukas Szabados
Daniel Winkler
David Stock
Thöny Alexander
Thomas Lörting
Julia Kunze-Liebhäuser
Engelbert Portenkirchner
author_sort Lukas Szabados
collection DOAJ
description Excellent, self‐improving sodiation rate capabilities in combination with high capacity retention upon galvanostatic charge/discharge cycling are found for oxygen‐deficient, carburized, and self‐organized titanium dioxide (TiO2−x) nanotubes (NTs). The sodiation mechanism is attributed to the formation of an acicular surface film as the active storage material with sodium (Na) peroxide (Na2O2) being the main component. Whether the proposed surface chemistry is unique for TiO2 NTs or serves as a common scheme for Na‐ion storage at metal oxide surfaces, in general, is not clear by now. Herein, three different materials, titanium(IV) oxide in the anatase and rutile phase and molybdenum(IV) oxide, are investigated in a planar electrode geometry toward their capability for Na‐ion storage. It is shown that all three materials under investigation demonstrate a significant progression of capacity increase upon cycling in combination with the formation of a Na‐oxide containing surface film. These “self‐improving” characteristics are found to significantly enhance the Na‐ion storage performance of the electrodes during long‐term galvanostatic cycling in a Na‐containing electrolyte.
first_indexed 2024-04-11T13:44:05Z
format Article
id doaj.art-682397c705944ba3b8ad9a3e89967535
institution Directory Open Access Journal
issn 2699-9412
language English
last_indexed 2024-04-11T13:44:05Z
publishDate 2022-12-01
publisher Wiley-VCH
record_format Article
series Advanced Energy & Sustainability Research
spelling doaj.art-682397c705944ba3b8ad9a3e899675352022-12-22T04:21:09ZengWiley-VCHAdvanced Energy & Sustainability Research2699-94122022-12-01312n/an/a10.1002/aesr.202200104Sodium‐Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium‐Ion and Sodium–Oxygen BatteriesLukas Szabados0Daniel Winkler1David Stock2Thöny Alexander3Thomas Lörting4Julia Kunze-Liebhäuser5Engelbert Portenkirchner6Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck AustriaInstitute of Physical Chemistry University of Innsbruck 6020 Innsbruck AustriaInstitut für Konstruktion und Materialwissenschaften University of Innsbruck A-6020 Innsbruck AustriaInstitute of Physical Chemistry University of Innsbruck 6020 Innsbruck AustriaInstitute of Physical Chemistry University of Innsbruck 6020 Innsbruck AustriaInstitute of Physical Chemistry University of Innsbruck 6020 Innsbruck AustriaInstitute of Physical Chemistry University of Innsbruck 6020 Innsbruck AustriaExcellent, self‐improving sodiation rate capabilities in combination with high capacity retention upon galvanostatic charge/discharge cycling are found for oxygen‐deficient, carburized, and self‐organized titanium dioxide (TiO2−x) nanotubes (NTs). The sodiation mechanism is attributed to the formation of an acicular surface film as the active storage material with sodium (Na) peroxide (Na2O2) being the main component. Whether the proposed surface chemistry is unique for TiO2 NTs or serves as a common scheme for Na‐ion storage at metal oxide surfaces, in general, is not clear by now. Herein, three different materials, titanium(IV) oxide in the anatase and rutile phase and molybdenum(IV) oxide, are investigated in a planar electrode geometry toward their capability for Na‐ion storage. It is shown that all three materials under investigation demonstrate a significant progression of capacity increase upon cycling in combination with the formation of a Na‐oxide containing surface film. These “self‐improving” characteristics are found to significantly enhance the Na‐ion storage performance of the electrodes during long‐term galvanostatic cycling in a Na‐containing electrolyte.https://doi.org/10.1002/aesr.202200104batteriesNa ionsoxidesself-improvementsurface films
spellingShingle Lukas Szabados
Daniel Winkler
David Stock
Thöny Alexander
Thomas Lörting
Julia Kunze-Liebhäuser
Engelbert Portenkirchner
Sodium‐Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium‐Ion and Sodium–Oxygen Batteries
Advanced Energy & Sustainability Research
batteries
Na ions
oxides
self-improvement
surface films
title Sodium‐Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium‐Ion and Sodium–Oxygen Batteries
title_full Sodium‐Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium‐Ion and Sodium–Oxygen Batteries
title_fullStr Sodium‐Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium‐Ion and Sodium–Oxygen Batteries
title_full_unstemmed Sodium‐Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium‐Ion and Sodium–Oxygen Batteries
title_short Sodium‐Containing Surface Film Formation on Planar Metal–Oxide Electrodes with Potential Application for Sodium‐Ion and Sodium–Oxygen Batteries
title_sort sodium containing surface film formation on planar metal oxide electrodes with potential application for sodium ion and sodium oxygen batteries
topic batteries
Na ions
oxides
self-improvement
surface films
url https://doi.org/10.1002/aesr.202200104
work_keys_str_mv AT lukasszabados sodiumcontainingsurfacefilmformationonplanarmetaloxideelectrodeswithpotentialapplicationforsodiumionandsodiumoxygenbatteries
AT danielwinkler sodiumcontainingsurfacefilmformationonplanarmetaloxideelectrodeswithpotentialapplicationforsodiumionandsodiumoxygenbatteries
AT davidstock sodiumcontainingsurfacefilmformationonplanarmetaloxideelectrodeswithpotentialapplicationforsodiumionandsodiumoxygenbatteries
AT thonyalexander sodiumcontainingsurfacefilmformationonplanarmetaloxideelectrodeswithpotentialapplicationforsodiumionandsodiumoxygenbatteries
AT thomaslorting sodiumcontainingsurfacefilmformationonplanarmetaloxideelectrodeswithpotentialapplicationforsodiumionandsodiumoxygenbatteries
AT juliakunzeliebhauser sodiumcontainingsurfacefilmformationonplanarmetaloxideelectrodeswithpotentialapplicationforsodiumionandsodiumoxygenbatteries
AT engelbertportenkirchner sodiumcontainingsurfacefilmformationonplanarmetaloxideelectrodeswithpotentialapplicationforsodiumionandsodiumoxygenbatteries