Algoritme Genetika untuk Peningkatan Prediksi Kebutuhan Permintaan Energi Listrik

Predicting the demand of electrical energy with a high degree of accuracy is expected. Application of an appropriate model using exact method will greatly affect the level of accuracy result. Neural Network (NN) and Support Vector Machine (SVM) models are used to predict the needs of electricity dem...

Full description

Bibliographic Details
Main Authors: Oman Somantri, Catur Supriyanto
Format: Article
Language:English
Published: Universitas Gadjah Mada 2016-05-01
Series:Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Subjects:
Online Access:http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/233
_version_ 1828914591338332160
author Oman Somantri
Catur Supriyanto
author_facet Oman Somantri
Catur Supriyanto
author_sort Oman Somantri
collection DOAJ
description Predicting the demand of electrical energy with a high degree of accuracy is expected. Application of an appropriate model using exact method will greatly affect the level of accuracy result. Neural Network (NN) and Support Vector Machine (SVM) models are used to predict the needs of electricity demand. Those models have weaknesses. Both are still difficult in determining the value of parameters used, thus, affecting the level of accuracy. Genetic Algorithm (GA) is proposed as a method to optimize the value of NN and SVM parameters in predicting the demand of electrical energy. The result shows that the NN and GA models have a better accuracy than the SVM and GA.
first_indexed 2024-12-13T19:57:43Z
format Article
id doaj.art-6827ed697acb4f2db898abcdc03e45e0
institution Directory Open Access Journal
issn 2301-4156
2460-5719
language English
last_indexed 2024-12-13T19:57:43Z
publishDate 2016-05-01
publisher Universitas Gadjah Mada
record_format Article
series Jurnal Nasional Teknik Elektro dan Teknologi Informasi
spelling doaj.art-6827ed697acb4f2db898abcdc03e45e02022-12-21T23:33:16ZengUniversitas Gadjah MadaJurnal Nasional Teknik Elektro dan Teknologi Informasi2301-41562460-57192016-05-015210811410.22146/jnteti.v5i2.233Algoritme Genetika untuk Peningkatan Prediksi Kebutuhan Permintaan Energi ListrikOman Somantri0Catur Supriyanto1Politeknik Harapan Bersama TegalUniversitas Dian NuswantoroPredicting the demand of electrical energy with a high degree of accuracy is expected. Application of an appropriate model using exact method will greatly affect the level of accuracy result. Neural Network (NN) and Support Vector Machine (SVM) models are used to predict the needs of electricity demand. Those models have weaknesses. Both are still difficult in determining the value of parameters used, thus, affecting the level of accuracy. Genetic Algorithm (GA) is proposed as a method to optimize the value of NN and SVM parameters in predicting the demand of electrical energy. The result shows that the NN and GA models have a better accuracy than the SVM and GA.http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/233listrikneural networksupport vector machinealgoritma genetik
spellingShingle Oman Somantri
Catur Supriyanto
Algoritme Genetika untuk Peningkatan Prediksi Kebutuhan Permintaan Energi Listrik
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
listrik
neural network
support vector machine
algoritma genetik
title Algoritme Genetika untuk Peningkatan Prediksi Kebutuhan Permintaan Energi Listrik
title_full Algoritme Genetika untuk Peningkatan Prediksi Kebutuhan Permintaan Energi Listrik
title_fullStr Algoritme Genetika untuk Peningkatan Prediksi Kebutuhan Permintaan Energi Listrik
title_full_unstemmed Algoritme Genetika untuk Peningkatan Prediksi Kebutuhan Permintaan Energi Listrik
title_short Algoritme Genetika untuk Peningkatan Prediksi Kebutuhan Permintaan Energi Listrik
title_sort algoritme genetika untuk peningkatan prediksi kebutuhan permintaan energi listrik
topic listrik
neural network
support vector machine
algoritma genetik
url http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/233
work_keys_str_mv AT omansomantri algoritmegenetikauntukpeningkatanprediksikebutuhanpermintaanenergilistrik
AT catursupriyanto algoritmegenetikauntukpeningkatanprediksikebutuhanpermintaanenergilistrik